如圖,在Rt△ABC 中,∠ABC=90゜,AB=8cm,BC=6cm,分別以A,C為圓心,以數(shù)學(xué)公式的長(zhǎng)為半徑作圓,將Rt△ABC截去兩個(gè)扇形,則剩余(陰影)部分的面積為多少?

解:因?yàn)锳C2=82+62,
=100,
所以AC=10,
8×6÷2-×3.14×(10÷2)2,
=24-×78.5,
=24-19.625,
=4.375(平方厘米);
答:陰影部分的面積是4.375平方厘米.
分析:由題意可知:陰影部分的面積=三角形ABC的面積-圓心角為90度的扇形的面積,據(jù)此即可得解.
點(diǎn)評(píng):解答此題的關(guān)鍵是明白:陰影部分的面積=三角形ABC的面積-圓心角為90度的扇形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點(diǎn).寫出點(diǎn)O到△ABC得三個(gè)頂點(diǎn)A、B、C的距離的關(guān)系,并證明.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

在平面內(nèi),旋轉(zhuǎn)變換試指某一個(gè)圖形繞一個(gè)定點(diǎn)按順時(shí)針或逆時(shí)針旋轉(zhuǎn)一定的角度而得到新位置圖形的一種變換.

活動(dòng)一:如圖①,在Rt△ABC中,D為斜邊AB上的一點(diǎn),AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時(shí),小明運(yùn)用圖形旋轉(zhuǎn)的方法,將△DBF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DGE(如圖②所示),小明一眼就看到答案,請(qǐng)你寫出陰影部分的面積
1
1

活動(dòng)二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點(diǎn)A作AE⊥BC,垂足為點(diǎn)E,小明仍運(yùn)用圖形旋轉(zhuǎn)的方法,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:
正方形
正方形
;
(2)AE的長(zhǎng)是
4
4

活動(dòng)三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC 中,∠ABC=90゜,AB=8cm,BC=6cm,分別以A,C為圓心,以
AC2
的長(zhǎng)為半徑作圓,將Rt△ABC截去兩個(gè)扇形,則剩余(陰影)部分的面積為多少?

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,AC=3,將其繞B點(diǎn)順時(shí)針旋轉(zhuǎn)一周,則分別以BA、BC為半徑的圓形成一圓環(huán).則該圓環(huán)的面積為
 
.(π取為3.14)

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:解答題

在平面內(nèi),旋轉(zhuǎn)變換試指某一個(gè)圖形繞一個(gè)定點(diǎn)按順時(shí)針或逆時(shí)針旋轉(zhuǎn)一定的角度而得到新位置圖形的一種變換.

活動(dòng)一:如圖①,在Rt△ABC中,D為斜邊AB上的一點(diǎn),AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時(shí),小明運(yùn)用圖形旋轉(zhuǎn)的方法,將△DBF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DGE(如圖②所示),小明一眼就看到答案,請(qǐng)你寫出陰影部分的面積______.
活動(dòng)二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點(diǎn)A作AE⊥BC,垂足為點(diǎn)E,小明仍運(yùn)用圖形旋轉(zhuǎn)的方法,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:______;
(2)AE的長(zhǎng)是______.
活動(dòng)三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案