【題目】如圖,在正方形ABCD中,對角線AC,BD交于點O,AG平分∠BAC交BD于G,DE⊥AG于點H.下列結論:①AD=2AE:②FD=AG;③CF=CD:④四邊形FGEA是菱形;⑤OF=BE,正確的有( )
A.2個B.3個C.4個D.5個
【答案】C
【解析】
①根據正方形的性質和角平分線的定義得:∠BAG=∠CAG=22.5°,由垂直的定義計算∠AED=90°﹣22.5°=67.5°,∠EDA=∠EDG=22.5°,得ED是AG的垂直平分線,則AE=EG,△BEG是等腰直角三角形,則AD=AB>2AE,可作判斷;②證明△DAF≌△ABG(ASA),可作判斷;③分別計算∠CDF=∠CFD=67.5°,可作判斷;④根據對角線互相平分且垂直的四邊形是菱形可作判斷;⑤設BG=x,則AF=AE=x,表示OF和BE的長,可作判斷.
解:①∵四邊形ABCD是正方形,
∴∠BAD=90°,∠BAC=45°,
∵AG平分∠BAC,
∴∠BAG=∠CAG=22.5°,
∵AG⊥ED,
∴∠AHE=∠EHG=90°,
∴∠AED=90°﹣22.5°=67.5°,
∴∠ADE=22.5°,
∵∠ADB=45°,
∴∠EDG=22.5°=∠ADE,
∵∠AHD=∠GHD=90°,
∴∠DAG=∠DGA,
∴AD=DG,AH=GH,
∴ED是AG的垂直平分線,
∴AE=EG,
∴∠EAG=∠AGE=22.5°,
∴∠BEG=45°=∠ABG,
∴∠BGE=90°,
∴AE=EG<BE,
∴AD=AB>2AE,
故①不正確;
②∵四邊形ABCD是正方形,
∴AD=AB,∠DAF=∠ABG=45°,
∵∠ADF=∠BAG=22.5°,
∴△DAF≌△ABG(ASA),
∴DF=AG,
故②正確;
③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,
∴∠CDF=∠CFD,
∴CF=CD,
故③正確;
④∵∠EAH=∠FAH,∠AHE=∠AHF,
∴∠AEF=∠AFE,
∴AE=AF,
∴EH=FH,
∵AH=GH,AG⊥EF,
∴四邊形FGEA是菱形;
故④正確;
⑤設BG=x,則AF=AE=x,
由①知△BEG是等腰直角三角形,
∴BE=x,
∴AB=AE+BE=x+x=(+1)x,
∴AO==,
∴OF=AO﹣AF=﹣x=x,
∴==,
∴OF=BE;
故⑤正確;
本題正確的結論有:②③④⑤;
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=20°,點P在OA邊上.
(1)以點O為圓心,OP長為半徑作,交OB于點C;
(2)分別以點P、C為圓心,PC長為半徑作弧,交于點D、E;
(3)連接DE,分別交OC、OP于點F、G;
(4)連接DP.
根據以上作圖過程及所作圖形,下列結中正確的是_____.(填序號)
①OC垂直平分DP;②∠COD=∠COP;③DF=FG;④OD=DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,在⊙O中,直徑AB=4,CD=2,直線AD,BC相交于點E.
(1)∠E的度數為.
(2)如圖2,AB與CD交于點F,請補全圖形并求∠E的度數;
(3)如圖3,弦AB與弦CD不相交,求∠AEC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字1,2,3.
(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為________;
(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,印刷一張矩形的包裝紙,印刷部分的長為8cm,寬為4cm,上下空白寬各cm,左右空白寬各xcm,四周空白處的面積為Scm2.
(1)求S與x的關系式;
(2)當四周空白處的面積為18cm2時,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:
A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;
B超市:購物金額打8折.
某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在A,B兩個超市的標價相同.根據商場的活動方式:
(1)若一次性付款4200元購買這種籃球,則在B商場購買的數量比在A商場購買的數量多5個.請求出這種籃球的標價;
(2)學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且m>n.(以上長度單位:cm)
(1)用含m,n的代數式表示所有裁剪線(圖中虛線部分)的長度之和;
(2)觀察圖形,發(fā)現代數式2m2+5mn+2n2可以因式分解為 ;
(3)若每塊小矩形的面積為10cm2,四個正方形的面積和為58cm2,試求(m+n)2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】周末,小華和小亮想用所學的數學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據相關測量信息,求河寬AB.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com