三個(gè)分?jǐn)?shù)的和是3數(shù)學(xué)公式,它們的分母相同,分子的比為2:2:4,則最大的分?jǐn)?shù)為________.

1
分析:據(jù)意可知,它們的分母相同,分子的比為2:2:4,所以三個(gè)數(shù)中有兩個(gè)數(shù)相等,另一個(gè)數(shù)是他們的2倍所以最大的數(shù)占三個(gè)分?jǐn)?shù)和的的一半,即3÷2.
解答:由于它們的分母相同,分子的比為2:2:4,所以最大數(shù)為:
3÷2==1;
故答案為:
點(diǎn)評(píng):本題的關(guān)健是從分?jǐn)?shù)比中找出最大數(shù)占三數(shù)和的比例是多少.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù).早在三千多年前,古埃及人就利用單位分?jǐn)?shù)進(jìn)行書寫和計(jì)算.將一個(gè)分?jǐn)?shù)分拆為幾個(gè)不同的單位分?jǐn)?shù)之和是一個(gè)古老且有意義的問題.例如:
3
4
=
1+2
4
=
1
4
+
2
4
=
1
4
+
1
2
;         
2
3
=
4
6
=
1+3
6
=
1
6
+
3
6
=
1
6
+
1
2

(1)仿照上例分別把分?jǐn)?shù)
5
8
3
5
分拆成兩個(gè)不同的單位分?jǐn)?shù)之和.
5
8
=
3
5
=
(2)在上例中,
3
4
=
1
4
+
1
2
,又因?yàn)?span id="slbvasw" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
2
=
3
6
=
1+2
6
=
1
6
+
2
6
=
1
6
+
1
3
,所以:
3
4
=
1
4
+
1
6
+
1
3
,即
3
4
可以寫成三個(gè)不同的單位分?jǐn)?shù)之和.按照這樣的思路,它也可以寫成四個(gè),甚至五個(gè)不同的單位分?jǐn)?shù)之和.根據(jù)這樣的思路,探索分?jǐn)?shù)
5
8
能寫出哪些兩個(gè)以上的不同單位分?jǐn)?shù)的和?(寫對(duì)一個(gè)得一分,滿分3分)

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源:同步訓(xùn)練與過關(guān)測(cè)試 小學(xué)數(shù)學(xué) 三年級(jí) 上冊(cè) 題型:022

用折紙方法,把長方形平均分成6份,其中一份是它的3份和5份又分別是它的.請(qǐng)按照從大到小的順序把這三個(gè)分?jǐn)?shù)排列起來.

(  )(  )(  )

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源:不詳 題型:解答題

分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù).早在三千多年前,古埃及人就利用單位分?jǐn)?shù)進(jìn)行書寫和計(jì)算.將一個(gè)分?jǐn)?shù)分拆為幾個(gè)不同的單位分?jǐn)?shù)之和是一個(gè)古老且有意義的問題.例如:
3
4
=
1+2
4
=
1
4
+
2
4
=
1
4
+
1
2
;         
2
3
=
4
6
=
1+3
6
=
1
6
+
3
6
=
1
6
+
1
2

(1)仿照上例分別把分?jǐn)?shù)
5
8
3
5
分拆成兩個(gè)不同的單位分?jǐn)?shù)之和.
5
8
=
3
5
=
(2)在上例中,
3
4
=
1
4
+
1
2
,又因?yàn)?span mathtag="math" >
1
2
=
3
6
=
1+2
6
=
1
6
+
2
6
=
1
6
+
1
3
,所以:
3
4
=
1
4
+
1
6
+
1
3
,即
3
4
可以寫成三個(gè)不同的單位分?jǐn)?shù)之和.按照這樣的思路,它也可以寫成四個(gè),甚至五個(gè)不同的單位分?jǐn)?shù)之和.根據(jù)這樣的思路,探索分?jǐn)?shù)
5
8
能寫出哪些兩個(gè)以上的不同單位分?jǐn)?shù)的和?(寫對(duì)一個(gè)得一分,滿分3分)

查看答案和解析>>

同步練習(xí)冊(cè)答案