28.5
分析:用
圓的面積減正方形的面積就是陰影部分的面積.圓的半徑是正方形的對角線,設(shè)正方形的邊長為a米,根據(jù)勾股定理,a
2+a
2=10
2,從而求出a
2=50,即正方形的面積是50平方米,進而即可求出陰影部分的面積.
解答:
圓的面積:
×3.14×10
2=
×3.14×100
=78.5(平方米),
正方形的面積:
設(shè)正方形的邊長為a米,由勾股定理
a
2+a
2=10
2 2a
2=100
a
2=50,
陰影分部的面積:
78.5-50
=28.5(平方米);
故答案為:28.5
點評:此題要求正方形的邊長,再求正方形的面積,小學(xué)階段不可以,設(shè)出正方形的邊長,恰巧得到正方形邊長的平方,也就是正方形的面積.