10.已知函數(shù)f(x)=(a-1)(ax-a-x)(0<a<1).
(Ⅰ)判斷f(x的奇偶性;
(Ⅱ)用定義證明f(x)為R上的增函數(shù).

分析 (Ⅰ)利用奇偶性的定義即可判斷函數(shù)f(x)為定義域上的奇函數(shù);
(Ⅱ)利用單調(diào)性的定義即可證明f(x)為定義域上的增函數(shù).

解答 解:(Ⅰ)由函數(shù)f(x)=(a-1)(ax-a-x),
對任意x∈R,都有f(-x)=(a-1)(a-x-ax)=-f(x),
所以f(x)為定義域R上的奇函數(shù);
證明:(Ⅱ)設(shè)x1、x2∈R且x1<x2,則
f(x1)-f(x2)=(a-1)(${a}^{{x}_{1}}$-${a}^{{-x}_{1}}$)-(a-1)(${a}^{{x}_{2}}$-${a}^{{-x}_{2}}$)
=(a-1)[(${a}^{{x}_{1}}$-${a}^{{x}_{2}}$)-(${a}^{{-x}_{1}}$-${a}^{{-x}_{2}}$)]
=(a-1)[(${a}^{{x}_{1}}$-${a}^{{x}_{2}}$)-$\frac{{a}^{{x}_{2}}{-a}^{{x}_{1}}}{{a}^{{x}_{1}}{•a}^{{x}_{2}}}$]
=(a-1)(${a}^{{x}_{1}}$-${a}^{{x}_{2}}$)(1+$\frac{1}{{a}^{{x}_{1}{+x}_{2}}}$),
由于0<a<1,${a}^{{x}_{1}}$-${a}^{{x}_{2}}$>0,1+$\frac{1}{{a}^{{x}_{1}{+x}_{2}}}$>0,
于是f(x1)<f(x2),所以f(x)為R上的增函數(shù).

點評 本題考查了函數(shù)的奇偶性與單調(diào)性的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C的中心在原點O,焦點在x軸上,離心率為$\frac{1}{2}$,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|2$\overrightarrow{OA}$-$\overrightarrow{OB}$|,求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.9${\;}^{-\frac{3}{2}}}$=( 。
A.9B.2C.$\frac{1}{27}$D.$-\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.表示正整數(shù)集的是( 。
A.QB.NC.N*D.Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調(diào)函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結(jié)論錯誤的是(  )
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)=$\frac{1}{{x}^{2}}$(x>0)不存在“和諧區(qū)間”D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知中心在原點的橢圓C的兩個焦點和橢圓C1:2x2+3y2=72的兩個焦點是一個正方形的四個頂點,且橢圓C過點A(${\sqrt{3}$,-2).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知P是橢圓C上的任意一點,Q(0,t),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x<0,-1<y<0,用不等號將x,xy,xy2從大到小排列得xy>xy2>x .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知$\sqrt{a}$+$\frac{1}{\sqrt{a}}$=3,求$\frac{({a}^{2}+\frac{1}{{a}^{2}}+3)}{\root{4}{a}+\frac{1}{\root{4}{a}}}$的值;
(2)計算[(1-log63)2+log62×log618]•log46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B.
(Ⅰ)求集合D(用區(qū)間表示);
(Ⅱ)求函數(shù)f(x)=x2-(1+a)x+a在D內(nèi)的零點.

查看答案和解析>>

同步練習(xí)冊答案