20.已知橢圓C的中心在原點O,焦點在x軸上,離心率為$\frac{1}{2}$,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標(biāo)準方程;
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|2$\overrightarrow{OA}$-$\overrightarrow{OB}$|,求直線在y軸上截距的取值范圍.

分析 (1)設(shè)橢圓C的方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),半焦距為c.依題意e=$\frac{c}{a}$=$\frac{1}{2}$,a+c=3,b2=a2-c2,解出即可得出.
(2)設(shè)直線l的方程為y=kx+m,與橢圓方程聯(lián)立化為:(3+4k2)x2+8kmx+4m2-12=0,△>0,設(shè)A(x1,y1),B(x2,y2).由|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|2$\overrightarrow{OA}$-$\overrightarrow{OB}$|,可得$\overrightarrow{OA}•\overrightarrow{OB}$=0.x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,把根與系數(shù)的關(guān)系代入化簡與△>0聯(lián)立解出即可得出.

解答 解:(1)設(shè)橢圓C的方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),半焦距為c.
依題意e=$\frac{c}{a}$=$\frac{1}{2}$,由橢圓C上的點到右焦點的最大距離3,得a+c=3,解得c=1,a=2,
∴b2=a2-c2=3,
∴橢圓C的標(biāo)準方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(2)設(shè)直線l的方程為y=kx+m,聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化為:(3+4k2)x2+8kmx+4m2-12=0,
△=64k2m2-4(3+4k2)(4m2-12)>0,化簡得3+4k2>m2
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
∵|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|2$\overrightarrow{OA}$-$\overrightarrow{OB}$|,∴$\overrightarrow{OA}•\overrightarrow{OB}$=0.
∴x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,化為km(x1+x2)+(1+k2)x1•x2+m2=0,
∴km(-$\frac{8km}{3+4{k}^{2}}$)+(1+k2)×$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+m2=0,
化簡得7m2=12+12k2
將k2=$\frac{7}{12}{m}^{2}$-1代入3+4k2>m2
可得m2$>\frac{3}{4}$,又由7m2=12+12k2≥12.
從而∴m2$≥\frac{12}{7}$,解得m≥$\frac{2\sqrt{21}}{7}$,或m≤-$\frac{2\sqrt{21}}{7}$,.
所以實數(shù)m的取值范圍是$(-∞,-\frac{2\sqrt{21}}{7}]$∪$[\frac{2\sqrt{21}}{7},+∞)$.

點評 本題考查了橢圓的標(biāo)準方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、不等式的解法、向量數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{x+5}$+$\frac{1}{x-2}$.
(1)求函數(shù)的定義域;
(2)求f(-4),f($\frac{2}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l⊥平面α,直線m∥平面β,則下列命題正確的是( 。
A.若α⊥β,則l∥mB.若l⊥m,則α∥βC.若l∥β,則m⊥αD.若α∥β,則 l⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)解不等式:|x-1|+|x|<4;
(2)已知a>2,求證:?x∈R,|ax-2|+a|x-2|>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=-(x-1)+log2$\frac{1-x}{1+x}$,則f($\frac{1}{2016}$)+f(-$\frac{1}{2016}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,三邊長AB=7,BC=5,AC=6,則cosB的值等于( 。
A.$\frac{19}{35}$B.-$\frac{14}{35}$C.-$\frac{18}{35}$D.-$\frac{19}{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若偶函數(shù)y=f(x),x∈R,滿足f(x+2)=-f(x),且x∈[0,2]時,f(x)=1-$\frac{1}{2}$x,則方程f(x)=log8|x|在[-10,10]內(nèi)的根的個數(shù)為( 。
A.12B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在等差數(shù)列{an}中,已知a4=7,a3+a6=16,an=31,則n為( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(a-1)(ax-a-x)(0<a<1).
(Ⅰ)判斷f(x的奇偶性;
(Ⅱ)用定義證明f(x)為R上的增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案