已知凸四邊形ABCD的四邊長為AB=8,BC=4,CD=DA=6,則用不等式表示∠A大小的范圍是   
【答案】分析:根據(jù)大角對大邊知,∠A越大,BD的距離越大.但是BD<BC+CD=4+6=10,所以當(dāng)∠C趨近于180度時,BD最大值接近10,故可知∠A最大90度但不能等于90度,由∠A最小可以趨近0度,這時BD最小值=AB-AD=2,∠BCD中BC距離最小值也是2,于是可知∠C也趨近0度,∠B趨近180度,進而求出∠A大小的范圍.
解答:解:∠A越大,BD的距離越大.但是BD<BC+CD=4+6=10,
所以當(dāng)∠C趨近于180度時,BD最大值接近10,
102=82+62,
∠A最大90度但不能等于90度,
∠A最小可以趨近0度,這時BD最小值=AB-AD=2,
∠BCD中BC距離最小值也是2,
這時∠C也趨近0度,
∠B趨近180度,
故0<∠A<90°,
故答案為0<∠A<90°.
點評:本題主要考查三角形邊角關(guān)系的知識點,解答本題的關(guān)鍵是熟練掌握邊角關(guān)系,大角對大邊,此題難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知凸四邊形ABCD,E,F(xiàn),G,H分別在AB,BC,CD,DA上,且BE=2AE,BF=2CF,DH=2AH,DG=2CG,求證:SKLMN=S△AKH+S△BEL+S△CFM+S△DNG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知凸四邊形ABCD的四邊長為AB=8,BC=2
2
,CD=DA=6,∠D=90°,則四邊形ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

王老師出了一道操作探究題:已知凸四邊形ABCD(如甲圖)紙片,能否將凸四邊形紙片剪兩刀,分割成四塊,然后再拼成一個平行四邊形?
小明思考一會兒后口述他的作法:
(1)找出四邊的中點E、F、G、H;
(2)沿EG、FH剪兩刀,分成四塊;
(3)在C點處(見乙圖),將三塊…說到這里,王老師打斷了他的表述,“我只需要聽到這里,你的思路及操作非常正確”.
(1)請你補充一下小明的口述,將Ⅰ、Ⅱ、Ⅲ進行怎樣的變換與Ⅳ拼在一起?
(2)請你說明一下,乙圖是平行四邊形紙塊嗎?(將兩個圖形進行恰當(dāng)標(biāo)注,以便解決問題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知凸四邊形ABCD中,AB=6cm,BC=5cm,CD=6cm,當(dāng)AD=
5
5
cm時,四邊形ABCD為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知凸四邊形ABCD的四邊長為AB=8,BC=4,CD=DA=6,則用不等式表示∠A大小的范圍是
0<∠A<90°
0<∠A<90°

查看答案和解析>>

同步練習(xí)冊答案