【題目】如圖,在△ABC外分別以AB,AC為邊作兩個(gè)大小不同的等腰直角三角形ABD和等腰直角三角形ACE,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.連結(jié)DCBE交于F點(diǎn).
(1)請(qǐng)你找出一對(duì)全等的三角形,并加以證明;
(2)直線DC、BE是否互相垂直,請(qǐng)說(shuō)明理由;
(3)求證:∠DFA=∠EFA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.現(xiàn)以這組數(shù)中的各個(gè)數(shù)作為正方形的長(zhǎng)度構(gòu)造一組正方形(如下圖),再分別依次從左到右取2個(gè),3個(gè),4個(gè),5個(gè)正方形拼成如下長(zhǎng)方形并記為①,②,③,④,相應(yīng)長(zhǎng)方形的周長(zhǎng)如下表所示:
若按此規(guī)律繼續(xù)作長(zhǎng)方形,則序號(hào)為⑧的長(zhǎng)方形周長(zhǎng)是( )
A. 288 B. 178 C. 28 D. 110
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過(guò)程,請(qǐng)?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是矩形ABCD的對(duì)角線,過(guò)AC的中點(diǎn)O作EF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)開(kāi)展“光盤行動(dòng)”宣傳活動(dòng),各班級(jí)參加該活動(dòng)的人數(shù)統(tǒng)計(jì)結(jié)果如下表,對(duì)于這組統(tǒng)計(jì)數(shù)據(jù),下列說(shuō)法中正確的是( )
班級(jí) | 1班 | 2班 | 3班 | 4班 | 5班 | 6班 |
人數(shù) | 52 | 60 | 62 | 54 | 58 | 62 |
A.平均數(shù)是58
B.中位數(shù)是58
C.極差是40
D.眾數(shù)是60
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果市場(chǎng)將120噸水果運(yùn)往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運(yùn)載量(噸/輛) | 5 | 8 | 10 |
汽車運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)若全部水果都用甲、乙兩種車型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)約運(yùn)費(fèi),市場(chǎng)可以調(diào)用甲、乙、丙三種車型參與運(yùn)送(每種車型至少1輛),已知它們的總輛數(shù)為16輛,你能通過(guò)列方程組的方法分別求出幾種車型的輛數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC 三個(gè)頂點(diǎn)的坐標(biāo)分別為 A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫出△ABC 向左平移 5 個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)在 x 軸上求作一點(diǎn) P,使△PAB 的周長(zhǎng)最小,請(qǐng)畫出△PAB,并直接寫出 P 的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com