【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的長度構(gòu)造一組正方形(如下圖),再分別依次從左到右取2個,3個,4個,5個正方形拼成如下長方形并記為①,②,③,④,相應(yīng)長方形的周長如下表所示:

若按此規(guī)律繼續(xù)作長方形,則序號為⑧的長方形周長是( )

A. 288 B. 178 C. 28 D. 110

【答案】B

【解析】

結(jié)合圖形分析表格中圖形的周長,①的周長為:2(1+2),②的周長為:2(2+3),③的周長為:2(3+5),④的周長為:2(5+8),由此可推出第n個長方形的寬為第n-1個長方形的長,第n個長方形的長為第n-1個長方形的長和寬的和.

解:由分析可得:第⑤個的周長為:2(8+13),
第⑥的周長為:2(13+21),
第⑦個的周長為:2(21+34),
第⑧個的周長為:2(34+55)=178,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時,∠A與∠1、2之間的數(shù)量關(guān)系為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點(diǎn)E從點(diǎn)C開始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動,動點(diǎn)F從點(diǎn)C同時出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多好佳水果店在批發(fā)市場購買某種水果銷售,第一次用1500元購進(jìn)若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進(jìn)價比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價45%售完剩余的水果.

(1)第一次水果的進(jìn)價是每千克多少元?

(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

5≤x<6

10

20%

6≤x<7

12%

7≤x<8

3

6%

8≤x<9

2

4%


(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠BAC=90°,過點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時,求證:AD=DE;
(2)如圖②,當(dāng)∠ABC=30°時,線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
(3)當(dāng)∠ABC=α?xí)r,請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)與一次函數(shù)y=kx+6 交于點(diǎn)C(2,4 ),一次函數(shù)圖象與兩坐標(biāo)軸分別交于點(diǎn)A和點(diǎn)B,動點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒1個單位長度的速度向點(diǎn)B運(yùn)動;同時,動點(diǎn)Q從點(diǎn)O出發(fā),沿OA以相同的速度向點(diǎn)A運(yùn)動,運(yùn)動時間為t秒(0<t≤6),以點(diǎn)P為圓心,PA為半徑的⊙P與AB交于點(diǎn)M,與OA交于點(diǎn)N,連接MN、MQ.

(1)求m與k的值;
(2)當(dāng)t為何值時,點(diǎn)Q與點(diǎn)N重合;
(3)若△MNQ的面積為S,試求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC外分別以AB,AC為邊作兩個大小不同的等腰直角三角形ABD和等腰直角三角形ACE,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.連結(jié)DCBE交于F點(diǎn).

(1)請你找出一對全等的三角形,并加以證明;

(2)直線DC、BE是否互相垂直,請說明理由;

(3)求證:∠DFA=∠EFA.

查看答案和解析>>

同步練習(xí)冊答案