【題目】如圖1,點(diǎn)是第二象限內(nèi)一點(diǎn),軸于,且是軸正半軸上一點(diǎn),是x軸負(fù)半軸上一點(diǎn),且.
(1)( ),( )
(2)如圖2,設(shè)為線段上一動(dòng)點(diǎn),當(dāng)時(shí),的角平分線與的角平分線的反向延長線交于點(diǎn),求的度數(shù): (注: 三角形三個(gè)內(nèi)角的和為)
(3)如圖3,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),作交于的平分線交于,當(dāng)點(diǎn)在運(yùn)動(dòng)的過程中,的大小是否變化?若不變,求出其值;若變化,請(qǐng)說明理由.
【答案】(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°
【解析】
(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b的值;
(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進(jìn)而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);
(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.
(1)由,可得和,
解得
∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);
(2)如圖,作DM∥x軸
根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,
∵∠CAD=90°,
∴∠CAE+∠OAD=90°,
∴2y+∠OAD=90°,
∴∠OAD=90°-2y,
∵DM∥x軸,
∴∠OAD+∠ADM=180°,
∴90-2y+2x+90°=180°,
∴x=y,
∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°
(3)∠N的大小不變,∠N=45°
理由:如圖,過D作DE∥BC,過N作NF∥BC.
∵BC∥x軸,
∴DE∥BC∥x軸,NF∥BC∥x軸,
∴∠EDM=∠BMD,∠EDA=∠OAD,
∵DM⊥AD,
∴∠ADM=90°,
∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,
∵MN平分∠BMD,AN平分∠DAO,
∴∠BMN=∠BMD,∠OAN=∠OAD,
∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD
=×90°=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助湖北省武漢市防控新冠肺炎,某愛心組織籌集了部分資金,計(jì)劃購買甲、乙兩種救災(zāi)物資共2000件送往災(zāi)區(qū),已知每件甲種物資的價(jià)格比每件乙種物資的價(jià)格貴10元,用350元購買甲種物資的件數(shù)恰好與用300元購買乙種物資的件數(shù)相同.
(1)求甲、乙兩種救災(zāi)物資每件的價(jià)格各是多少元?
(2)經(jīng)調(diào)查,災(zāi)區(qū)對(duì)甲種物資的需求量不少于乙種物資的1.5倍,若該愛心組織如何購買這2000件物資,才能使得購買資金最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將1個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒?yàn),每次摸出一個(gè)球(有放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)m | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的頻率 | 0.23 | 0.21 | 0.30 | 0.26 | 0.253 |
(1)補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)球是黑球的概率是 ;(精確到0.01)
(2)估算袋中白球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,作OF∥AB交BC于點(diǎn)F,連接EF.
(1)求證:OF⊥CE
(2)求證:EF是⊙O的切線;
(3)若O的半徑為3,∠EAC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且=.連接AF并延長交⊙O于點(diǎn)E,連接AD,DE.若CF=2,AF=3.下列結(jié)論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種竹制躺椅如圖①所示,其側(cè)面示意圖如圖②③所示,這種躺椅可以通過改變支撐桿CD的位置來調(diào)節(jié)躺椅舒適度.假設(shè)AB所在的直線為地面,已知AE=120 cm,當(dāng)把圖②中的支撐桿CD調(diào)節(jié)至圖③中的C′D的位置時(shí),∠EAB由20°變?yōu)?/span>25°.
(1)你能求出調(diào)節(jié)后該躺椅的枕部E到地面的高度增加了多少嗎?(結(jié)果精確到0.1 cm,參考數(shù)據(jù):sin 20°≈0.342 0,sin 25°≈0.422 6)
(2)已知點(diǎn)O為AE的一個(gè)三等分點(diǎn),根據(jù)人體工程學(xué),當(dāng)點(diǎn)O到地面的距離為26 cm時(shí),人體感覺最舒適.請(qǐng)你求出此時(shí)枕部E到地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為,且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的表達(dá)式及A,B兩點(diǎn)的坐標(biāo).
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值;若不存在,請(qǐng)說明理由;
(3)在以AB為直徑的⊙M中,CE與⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是利用四邊形的不穩(wěn)定性制造的一個(gè)移動(dòng)升降裝修平臺(tái),其基本圖形是菱形,主體部分相當(dāng)于由6個(gè)菱形相互連接而成,通過改變菱形的角度,從而可改變裝修平臺(tái)高度.
(1)如圖(1)是一個(gè)基本圖形,已知AB=1米,當(dāng)∠ABC為60°時(shí),求AC的長及此時(shí)整個(gè)裝修平臺(tái)的高度(裝修平臺(tái)的基腳高度忽略不計(jì));
(2)當(dāng)∠ABC從60°變?yōu)?/span>90°(如圖(2)是一個(gè)基本圖形變化后的圖形)時(shí),求整個(gè)裝修平臺(tái)升高了多少米.[結(jié)果精確到0.1米]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com