【題目】如圖,AH是圓O的直徑,AE平分∠FAH,交⊙O于點E,過點E的直線FG⊥AF,垂足為F,B為直徑OH上一點,點E、F分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若AD=8,EB=5,求⊙O的直徑.
【答案】(1)見解析;(2)⊙O的直徑為.
【解析】
(1)連接OE,證明FG是⊙O的切線,只要證明∠OEF=90°即可;
(2)先求出CE,利用角平分線得出EF=BE=5,進而求出CF,即可利用勾股定理求出AB,最后用勾股定理即可得出結論.
(1)如圖1,連接OE,
∵OA=OE,
∴∠EAO=∠AEO,
∵AE平分∠FAH,
∴∠EAO=∠FAE,
∴∠FAE=∠AEO,
∴AF∥OE,
∴∠AFE+∠OEF=180°,
∵AF⊥GF,
∴∠AFE=∠OEF=90°,
∴OE⊥GF,
∵點E在圓上,OE是半徑,
∴GF是⊙O的切線.
(2)設AB=x,
∵四邊形ABCD是矩形,
∴AB=CD=x,BC=AD=8,
∴CE=BC﹣BE=3,
∵AE是∠BAF的角平分線,BE⊥AB,EF⊥AF,
∴EF=BE=5,
在Rt△CEF中,根據(jù)勾股定理得,CF=4,
∴DF=CD﹣CF=x﹣4,
在Rt△ABE和Rt△AFE中, ,
∴Rt△ABE≌Rt△AFE(HL),
∴AF=AB=x,
在Rt△ADF中,x2﹣(x﹣4)2=64,
∴x=10,
∴AB=10,
設⊙O的半徑為r,
∴OB=10﹣r,
在Rt△BOE中,r2﹣(10﹣r)2=25,
∴r= ,
∴⊙O的直徑為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線y=(k<0)經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(﹣8,4),則△AOC的面積為( 。
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、圖②均是5×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點A、E、F均在格點上.在圖①、圖②中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.
(1)在圖①中畫一個正方形ABCD,使其面積為5.
(2)在圖②中畫一個等腰△EFG,使EF為其底邊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為4,點E,F分別在AD,DC上,AE=DF=1,BE與AF相交于點G,點H為BF的中點,連接GH,則GH的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-x+b與x軸交于點A,與y軸交于點B,與直線y=x交于點E,點E的橫坐標為3.
(1)求點E的坐標和b的值;
(2)在x軸上有點P(m,0),過點P作x軸的垂線,與直線y=-x+b交于點C,與直線y=x交于點D.若CD≤4,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)在如圖所示的平面直角坐標系中表示下面各點:
A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);
(2)A點到原點的距離是 .
(3)將點C向x軸的負方向平移6個單位,它與點 重合.
(4)連接CE,則直線CE與y軸是什么位置關系?
(5)點D分別到x、y軸的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司在甲、乙倉庫共存放某種原料450噸,如果運出甲倉庫所存原料的60%,乙倉庫所存原料的40%,那么乙倉庫剩余的原料比甲倉庫剩余的原料多30噸.
(1)求甲、乙兩倉庫各存放原料多少噸?
(2)現(xiàn)公司需將300噸原料運往工廠,從甲、乙兩個倉庫到工廠的運價分別為120元/噸和100元/噸.經(jīng)協(xié)商,從甲倉庫到工廠的運價可優(yōu)惠a元噸(10≤a≤30),從乙倉庫到工廠的運價不變,設從甲倉庫運m噸原料到工廠,請求出總運費W關于m的函數(shù)解析式(不要求寫出m的取值范圍);
(3)在(2)的條件下,請根據(jù)函數(shù)的性質(zhì)說明:隨著m的增大,W的變化情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當點H與點A重合時,EF=2.以上結論中,你認為正確的有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉,三角板的兩邊分別交邊AB、CD于點G、F.
(1)求證:△GBE∽△GEF.
(2)設AG=x,GF=y,求Y關于X的函數(shù)表達式,并寫出自變量取值范圍.
(3)如圖2,連接AC交GF于點Q,交EF于點P.當△AGQ與△CEP相似,求線段AG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com