【題目】如圖,直線(xiàn)AB:y=-x-b分別與x、y軸交于A(6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線(xiàn)交x軸負(fù)半軸于點(diǎn)C,且OB:OC=3:1.
(1)求直線(xiàn)BC的解析式;
(2)如圖,P為A點(diǎn)右側(cè)x軸上的一動(dòng)點(diǎn),以P為直角頂點(diǎn),BP為腰在第一象限內(nèi)作等腰直角△BPQ,連接QA并延長(zhǎng)交y軸于點(diǎn)K,當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),K點(diǎn)的位置是否發(fā)現(xiàn)變化?若不變,請(qǐng)求出它的坐標(biāo);如果變化,請(qǐng)說(shuō)明理由.
【答案】(1)y=3x+6(2)K點(diǎn)的位置不發(fā)生變化,K(0,6),理由見(jiàn)解析
【解析】
(1)設(shè)BC的解析式是y=ax+c,由直線(xiàn)AB:y=xb過(guò)A(6,0),可以求出b,因此可以求出B點(diǎn)的坐標(biāo),再由已知條件可求出C點(diǎn)的坐標(biāo),把B,C點(diǎn)的坐標(biāo)分別代入求出a和c的值即可;
(2)過(guò)Q作QH⊥x軸于H,首先證明△BOP≌△PHQ,再分別證明△AHQ和△AOK為等腰直角三角形,問(wèn)題得解.
(1)由已知:0=6b,
∴b=6,
∴AB:y=x+6.
∴B(0,6),
∴OB=6,
∵OB:OC=3:1,
OC==2,
∴C(2,0),
設(shè)BC的解析式是y=ax+c,代入得,
解得:,
∴直線(xiàn)BC的解析式是:y=3x+6;
(2)K點(diǎn)的位置不發(fā)生變化,K(0,6).
過(guò)Q作QH⊥x軸于H,
∵△BPQ是等腰直角三角形,
∴∠BPQ=90°,PB=PQ,
∵∠BOA=∠QHA=90°,
∴∠BPO=∠PQH,
∴△BOP≌△PHQ,
∴PH=BO,OP=QH,
∴PH+PO=BO+QH,
即OA+AH=BO+QH,
又OA=OB,
∴AH=QH,
∴△AHQ是等腰直角三角形,
∴∠QAH=45°,
∴∠OAK=45°,
∴△AOK為等腰直角三角形,
∴OK=OA=6,
∴K(0,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線(xiàn)交AD于點(diǎn)E,交CB的延長(zhǎng)線(xiàn)于點(diǎn)F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0).與y軸交于點(diǎn)C(0,5).有一寬度為1,長(zhǎng)度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線(xiàn)于點(diǎn)P和Q,交直線(xiàn)AC于點(diǎn)M和N.交x軸于點(diǎn)E和F.
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)M和N都在線(xiàn)段AC上時(shí),連接MF,如果sin∠AMF= ,求點(diǎn)Q的坐標(biāo);
(3)在矩形的平移過(guò)程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)經(jīng)過(guò)A(﹣1,0),B(5,0),C(0,- )三點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線(xiàn)上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊長(zhǎng)方形紙片ABCD,先折出折痕(對(duì)角線(xiàn))BD,再折疊使AD邊與BD重合,得折痕DG,若AB=4,BC=3,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=3x與雙曲線(xiàn)y= (k≠0,且x>0)交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)是1.
(1)求點(diǎn)A的坐標(biāo)及雙曲線(xiàn)的解析式;
(2)點(diǎn)B是雙曲線(xiàn)上一點(diǎn),且點(diǎn)B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.
(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com