精英家教網 > 初中數學 > 題目詳情

【題目】如圖,拋物線經過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

【答案】
(1)

解:設拋物線的解析式為y=ax2+bx+c(a≠0),

∵A(﹣1,0),B(5,0),C(0,- )三點在拋物線上,

,

解得

∴拋物線的解析式為:y= x2﹣2x﹣ ;


(2)

解:∵拋物線的解析式為:y= x2﹣2x﹣ ,

∴其對稱軸為直線x=﹣ =﹣ =2,

連接BC,如圖1所示,

∵B(5,0),C(0,﹣ ),

∴設直線BC的解析式為y=kx+b(k≠0),

,

解得

∴直線BC的解析式為y= x﹣ ,

當x=2時,y=1﹣ =﹣ ,

∴P(2,﹣ );


(3)

解:存在.

如圖2所示,

①當點N在x軸下方時,

∵拋物線的對稱軸為直線x=2,C(0,﹣ ),

∴N1(4,﹣ );

②當點N在x軸上方時,

如圖,過點N2作N2D⊥x軸于點D,

在△AN2D與△M2CO中,

∴△AN2D≌△M2CO(ASA),

∴N2D=OC= ,即N2點的縱坐標為

x2﹣2x﹣ = ,

解得x=2+ 或x=2﹣ ,

∴N2(2+ ),N3(2﹣ ).

綜上所述,符合條件的點N的坐標為(4,﹣ ),(2+ , )或(2﹣ ).


【解析】本題考查的是二次函數綜合題,涉及到用待定系數法求一次函數與二次函數的解析式、平行四邊的判定與性質、全等三角形等知識,在解答(3)時要注意進行分類討論.(1)設拋物線的解析式為y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,- )三點代入求出a、b、c的值即可;(2)因為點A關于對稱軸對稱的點B的坐標為(5,0),連接BC交對稱軸直線于點P,求出P點坐標即可;(3)分點N在x軸下方或上方兩種情況進行討論.
【考點精析】本題主要考查了確定一次函數的表達式和平行四邊形的判定與性質的相關知識點,需要掌握確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,那么S3= , 則Sn= . (用含n的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現以線段OA,OB為斜邊向∠MON的外側作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉,得△A′BO′,點A,O旋轉后的對應點為A′,O′,記旋轉角為α.

(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標;
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉后的對應點為P′,當O′P+BP′取得最小值時,求點P′的坐標(直接寫出結果即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.

(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC 運動到點C停止,點Q沿BC運動到點C停止,它們運動的速度都是1cm/s,設P,Q出發(fā)t秒時,△BPQ的面積為ycm,已知y與t的函數關系的圖形如圖2(曲線OM為拋物線的一部分),則下列結論:①AD=BE=5cm;②當0<t≤5時,;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結論個數為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構成一個平面圖形.

(1)若固定三根木條AB,BC,AD不動,AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動,AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當點D移到BA的延長線上時,點C也在BA的延長線上;當點C移到AB的延長線上時,點A、C、D能構成周長為30cm的三角形,求出木條AD,BC的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為:158,160,154,158,170,則由這組數據得到的結論錯誤的是(
A.平均數為160
B.中位數為158
C.眾數為158
D.方差為20.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列各圖是選自歷屆世博會徽中的圖案,其中是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案