【題目】如圖,燈塔A周圍1000米水域內(nèi)有礁石,一艦艇由西向東航行,在O處測得燈塔A在北偏東74°方向線上,這時OA相距4200米,如果不改變航向,此艦艇是否有觸礁的危險?(指定數(shù)學(xué)課使用科學(xué)計算器的地區(qū)的考生須使用計算器計算.以下數(shù)據(jù)供計算器未進(jìn)入考場的地區(qū)的考生選用:cos74°=0.2756,sin74°=0.9613,cot74°=0.2867,tan74°=3.487)

【答案】沒有危險.

【解析】

本題可通過構(gòu)造直角三角形來求解.過AAB與正東方向線垂直,垂足為B.那么只需比較AB的值是否大于1000,如果大于則沒有觸礁危險,反之則有,那么求AB就是問題的關(guān)鍵,直角三角形AOB中,∠AOB的度數(shù)是容易求出的,又已知了OA的長,AB就不難求出了.

AAB與正東方向線垂直,垂足為B

RtAOB中,OA=4200,∠AOB=90°-74°=16°,

AB=AOsinAOB

=4200sin16°,

=4200cos74°,

=4200×0.2756

≈1158(米)>1000(米)

答:此艦按原航向繼續(xù)航行沒有觸礁危險.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABC的直角邊AB為直徑作半圓⊙O與邊BC交于點(diǎn)D,過D作半圓的切線與邊AC交于點(diǎn)E,過EEFAB,與BC交于點(diǎn)F.若AB20,OF7.5,則CD的長為( 。

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線ykx+6和直線y=(k+1x+6k是正整數(shù))及x軸圍成的三角形面積為Skk1,2,3,…,8),則S1+S2+S3++S8的值是( 。

A. B. C. 16D. 14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,對角線AC,BD交于點(diǎn)O,點(diǎn)P在線段BC上(不含點(diǎn)B),BPE=ACB,PE交BO于點(diǎn)E,過點(diǎn)B作BFPE,垂足為F,交AC于點(diǎn)G.

(1) 當(dāng)點(diǎn)P與點(diǎn)C重合時(如圖).求證:BOG≌△POE;(4分)

(2)通過觀察、測量、猜想:= ,并結(jié)合圖證明你的猜想;(5分)

(3)把正方形ABCD改為菱形,其他條件不變(如圖),若ACB=α,求的值.(用含α的式子表示)(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計圖如圖1AB可繞點(diǎn)A旋轉(zhuǎn),在點(diǎn)C處安裝一根可旋轉(zhuǎn)的支撐臂CDAC30 cm.

(1)如圖2,當(dāng)∠BAC24°時,CDAB,求支撐臂CD的長;

(2)如圖3,當(dāng)∠BAC12°時,求AD的長.(結(jié)果保留根號)

(參考數(shù)據(jù):sin 24°≈0.40cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,AB=AC,BAC=90°,OBC的中點(diǎn)。

(1)寫出點(diǎn)OABC的三個頂點(diǎn)A、B、C的距離的大小關(guān)系并說明理由;

(2)如果點(diǎn)M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷OMN的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的書包里只放了A4大小的試卷共4張,其中語文1張、數(shù)學(xué)2張、英語1

若隨機(jī)地從書包中抽出2張,求抽出的試卷中有英語試卷的概率.

若隨機(jī)地從書包中抽出3張,抽出的試卷中有英語試卷的概率為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在對角線BD上,EFABAD于點(diǎn)F,連接BF

1)如圖1,若AB4,DE,求BF的長;

2)如圖2.連接AE,交BF于點(diǎn)H,若DFHF2,求線段AB的長;

3)如圖3,連接BF,AB3,設(shè)EFxBEF的面積為S,請用x的表達(dá)式表示S,并求出S的最大值;當(dāng)S取得最大值時,連接CE,線段DB繞點(diǎn)D順時針旋轉(zhuǎn)30°得到線段DJ,DJCE交于點(diǎn)K,連接CJ,求證:CJCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ca0)與x軸交于A﹣2,0)、B4,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=2OA

1)試求拋物線的解析式;

2)直線y=kx+1k0)與y軸交于點(diǎn)D,與拋物線交于點(diǎn)P,與直線BC交于點(diǎn)M,記m=,試求m的最大值及此時點(diǎn)P的坐標(biāo);

3)在(2)的條件下,點(diǎn)Qx軸上的一個動點(diǎn),點(diǎn)N是坐標(biāo)平面內(nèi)的一點(diǎn),是否存在這樣的點(diǎn)Q、N,使得以P、DQ、N四點(diǎn)組成的四邊形是矩形?如果存在,請求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案