【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人:

1)第一輪后患病的人數(shù)為 ;(用含x的代數(shù)式表示)

2)在進(jìn)入第二輪傳染之前,有兩位患者被及時(shí)隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.

【答案】1)(1+x)人;(2)第二輪傳染后共會有21人患病的情況不會發(fā)生.

【解析】

1)根據(jù)題意,開始有一人患了流感,第一輪的傳染源就是這個(gè)人,他傳染了x人,則第一輪后共有(1+x)人患了流感;
2)第二輪傳染中,這些人中的每個(gè)人又傳染了x人,因進(jìn)入第二輪傳染之前,有兩位患者被及時(shí)隔離并治愈,則第二輪后共有x-1+xx-1)人患了流感,而此時(shí)患流感人數(shù)為21,根據(jù)這個(gè)等量關(guān)系列出方程若能求得正整數(shù)解即可會有21人患。

解:(1)第一輪后患病的人數(shù)為(1+x)人;

2)設(shè)在每輪傳染中一人將平均傳給x人,

根據(jù)題意得:x-1+xx-1=21,

整理得:x2-1=21

解得:,

x1,x2都不是正整數(shù),

∴第二輪傳染后共會有21人患病的情況不會發(fā)生.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩個(gè)全等的等腰直角三角形擺成如圖所示的樣子(圖中的所有點(diǎn),線都在同一平面內(nèi)),請?jiān)趫D中找出一組相似的三角形,并說明它們相似的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE⊙O的直徑,點(diǎn)AEB的延長線上,弦PD⊥BE,垂足為C,連接OD

∠AOD=∠APC

1)求證:AP⊙O的切線;

2)若⊙O的半徑是4,AP=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊內(nèi)一點(diǎn)繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),連接已知

求證:是等邊三角形;

當(dāng)時(shí),試判斷的形狀,并說明理由;

探究:當(dāng)為多少度時(shí),是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸于點(diǎn)A(﹣1,0)和點(diǎn)B3,0),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)連接BC,若點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),過點(diǎn)P作直線PNx軸于點(diǎn)N,交拋物線于點(diǎn)M,當(dāng)△BCM面積最大時(shí),求△BPN的周長.

3)在(2)的條件下,當(dāng)△BCM面積最大時(shí),在拋物線的對稱軸上是否存在點(diǎn)Q,使△CNQ為等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖位置,,以此類推,這樣連續(xù)旋轉(zhuǎn)2015次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路程之和是( )

A.2015πB.3019C.3018πD.3024π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P是⊙O上一點(diǎn),過點(diǎn)P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動(dòng)點(diǎn)A、B(不與P,Q重合),連接AP、BP. 若∠APQ=BPQ.

(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑;

(2)如圖2,選接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM(不與P、M重合),連接ON、OP,若∠NOP+2OPN=90°,探究直線ABON的位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1).

1)以O點(diǎn)為位似中心在y軸的左側(cè)將OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

2B點(diǎn)的對應(yīng)點(diǎn)B′的坐標(biāo)是 C點(diǎn)的對應(yīng)點(diǎn)C′的坐標(biāo)是 ;

3)在BC上有一點(diǎn)Px,y),按(1)的方式得到的對應(yīng)點(diǎn)P′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直線BC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的底面圓周長

(2)以直線AC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的側(cè)面積;

查看答案和解析>>

同步練習(xí)冊答案