【題目】如圖1,矩形ABCD中,AD=2,AB=a,點(diǎn)E為AD的中點(diǎn),連接BE.過BE的中點(diǎn)F作FG⊥BE,交射線BC于點(diǎn)G,交邊CD于H點(diǎn).
(1)連接HE、HB
①求證:HE=HB;
②若a=4,求CH的長.
(2)連接EG,△BEG面積為S
①BE= (用含a的代數(shù)式表示);
②求S與a的函數(shù)關(guān)系式.
(3)如圖2,設(shè)FG的中點(diǎn)為P,連接PB、BD.猜想∠GBP與∠DBE的關(guān)系,并說明理由.
【答案】(1)①詳見解析;②;(2)①BE=;②;(3)猜想:∠GBP=∠DBE;詳見解析
【解析】
(1)①證明是的垂直平分線,即可得到答案,②先求解,利用由三角函數(shù)建立聯(lián)系,求解 再求解 由同角的三角函數(shù)求解即可,
(2)①利用勾股定理直接得到答案,②先求解,利用由三角函數(shù)建立聯(lián)系,求解從而可得答案,
(3)過作于 過作于,證明即可得到答案.
證明:(1)①如圖, 是的中點(diǎn),
是的垂直平分線,
②為的中點(diǎn),
矩形
為的中點(diǎn),
(2)①由
故答案為:
②為的中點(diǎn),
由①知:
(3),理由如下:
證明:過作于 過作于,
則
由
為的中點(diǎn),
由
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,點(diǎn)G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點(diǎn)O.
(1)求證:OE=OF;
(2)若點(diǎn)O為CD的中點(diǎn),求證:四邊形DECF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對應(yīng)點(diǎn)分別為C,D,其中點(diǎn)C在y軸負(fù)半軸上.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)如圖1,連AD交BC于點(diǎn)E,若點(diǎn)E在y軸正半軸上,求的值;
(3)如圖2,點(diǎn)F,G分別在CD,BD的延長線上,連結(jié)FG,∠BAC的角平分線與∠DFG的角平分線交于點(diǎn)H,求∠G與∠H之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D,E五種不同口味的牛奶供學(xué)生選擇.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖所示兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)本次調(diào)查的學(xué)生有多少名?
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出喜好C口味牛奶的學(xué)生人數(shù)對應(yīng)的扇形圓心角的度數(shù).
(3)該校共有1 200名學(xué)生訂了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂牛奶的學(xué)生配送一盒牛奶,要使學(xué)生每天都能喝到自己喜好的品味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,B口味牛奶要比C口味牛奶約多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有若干個(gè)僅顏色不同的紅球和黑球,現(xiàn)往一個(gè)不透明的袋子里裝進(jìn)2個(gè)紅球和2個(gè)黑球.
(1)隨機(jī)摸出一個(gè)球是黑球的概率為 ;若先從袋子里取出m個(gè)紅球(不放回),再從袋子里隨機(jī)摸出一個(gè)球,將“摸到黑球”記為事件A.若事件A為必然事件,則m= ;
(2)若從袋子里一次摸出兩個(gè)球,用列表法或畫樹狀圖法列出所有等可能結(jié)果,并求摸出的兩球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC,AB=AC,∠BAC=90°,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E在邊AB上(點(diǎn)E不與點(diǎn)A、B重合),點(diǎn)F在邊AC上,聯(lián)結(jié)DE、DF.
(1)如圖1,當(dāng)∠EDF=90°時(shí),求證:BE=AF;
(2)如圖2,當(dāng)∠EDF=45°時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,對角線AC與BD交于點(diǎn)O,點(diǎn)M在線段OD上,聯(lián)結(jié)AM并延長交邊DC于點(diǎn)E,點(diǎn)N在線段OC上,且ON=OM,聯(lián)結(jié)DN與線段AE交于點(diǎn)H,聯(lián)結(jié)EN、MN.
(1)如果EN∥BD,求證:四邊形DMNE是菱形;
(2)如果EN⊥DC,求證:AN2=NCAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知C是線段AB上的一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作正方形ACDE和正方形CBGF,點(diǎn)F在CD上,聯(lián)結(jié)AF、BD,BD與FG交于點(diǎn)M,點(diǎn)N是邊AC上的一點(diǎn),聯(lián)結(jié)EN交AF 與點(diǎn)H.
(1)求證:AF=BD;
(2)如果,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這條花邊中有4個(gè)圓和4個(gè)正三角形,且這條花邊的總長度為4,則花邊上正三角形的內(nèi)切圓半徑為()
A.B.C.1D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com