⊙O是△ABC的外接圓,AB是直徑,過的中點P作⊙O的直徑PG交弦BC于點D,連接AG, CP,PB.
(1) 如題24﹣1圖;若D是線段OP的中點,求∠BAC的度數(shù);
(2) 如題24﹣2圖,在DG上取一點k,使DK=DP,連接CK,求證:四邊形AGKC是平行四邊形;
(3) 如題24﹣3圖;取CP的中點E,連接ED并延長ED交AB于點H,連接PH,求證:PH⊥AB.
【解析】(1) ∵AB為⊙O直徑,,
∴PG⊥BC,即∠ODB=90°,
∵D為OP的中點,
∴OD=,
∴cos∠BOD=,
∴∠BOD=60°,
∵AB為⊙O直徑,
∴∠ACB=90°,
∴∠ACB=∠ODB,
∴AC∥PG,
∴∠BAC=∠BOD=60°;
(2) 由(1)知,CD=BD,
∵∠BDP=∠CDK,DK=DP,
∴△PDB≌△CDK,
∴CK=BP,∠OPB=∠CKD,
∵∠AOG=∠BOP,
∴AG=BP,
∴AG=CK
∵OP=OB,
∴∠OPB=∠OBP,
又∠G=∠OBP,
∴AG∥CK,
∴四邊形AGCK是平行四邊形;
(3) ∵CE=PE,CD=BD,
∴DE∥PB,即DH∥PB
∵∠G=∠OPB,
∴PB∥AG,
∴DH∥AG,
∴∠OAG=∠OHD,
∵OA=OG,
∴∠OAG=∠G,
∴∠ODH=∠OHD,
∴OD=OH,
又∠ODB=∠HOP,OB=OP,
∴△OBD≌△HOP,
∴∠OHP=∠ODB=90°,
∴PH⊥AB.
科目:初中數(shù)學 來源: 題型:
如圖,從直徑是2米的圓形鐵皮上剪出一個圓心角是90°的扇形ABC(A、B、C三點在⊙O上),將剪下來的扇形圍成一個圓錐的側(cè)面,則該圓錐的底面圓的半徑是__________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某校開展校園“美德少年”評選活動,共有“助人為樂”,“自強自立”、“孝老愛親”,“誠實守信”四種類別,每位同學只能參評其中一類,評選后,把最終入選的20位校園“美德少年”分類統(tǒng)計,制作了如下統(tǒng)計表,后來發(fā)現(xiàn),統(tǒng)計表中前兩行的數(shù)據(jù)都是正確的,后兩行的數(shù)據(jù)中有一個是錯誤的.
類別 | 頻數(shù) | 頻率 |
助人為樂美德少年 | a | 0.20 |
自強自立美德少年 | 3 | b |
孝老愛親美德少年 | 7 | 0.35 |
誠實守信美德少年 | 6 | 0.32 |
根據(jù)以上信息,解答下列問題:
(1)統(tǒng)計表中的a= ,b ;
(2)統(tǒng)計表后兩行錯誤的數(shù)據(jù)是 ,該數(shù)據(jù)的正確值是 ;
(3)校園小記者決定從A,B,C三位“自強自立美德少年”中隨機采訪兩位,用畫樹狀圖或列表的方法,求A,B都被采訪到的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如題19圖,已知銳角△ABC.
(1) 過點A作BC邊的垂線MN,交BC于點D(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2) 在(1)條件下,若BC=5,AD=4,tan∠BAD=,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,G,E分別是正方形ABCD的邊AB,BC的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:
①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH
其中,正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2014年我國的GDP總量為629180億元,將629180億用科學記數(shù)法表示為( )
A. 6.2918×105元 B. 6.2918×1014元
C. 6.2918×1013元 D. 6.2918×1012元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com