【題目】如∠MON30°、OP6,點(diǎn)AB分別在OM、ON上;(1)請?jiān)趫D中畫出周長最小的△PAB(保留畫圖痕跡);(2)請求出(1)中△PAB的周長.

【答案】(1)見解析; (2) 6.

【解析】

(1)設(shè)點(diǎn)P關(guān)于OM、ON對稱點(diǎn)分別為P′、P″,當(dāng)點(diǎn)A、BP′P″上時(shí),PAB周長為PA+AB+BP=P′P″,此時(shí)周長最小.(2)根據(jù)軸對稱的性質(zhì),可得OPP是等邊三角形即可解決問題.

(1)如圖所示:

分別作點(diǎn)P關(guān)于OM、ON的對稱點(diǎn)P′、P″,連接OP′、OP″、P′P″,P′P″OM、ON于點(diǎn)A.B,

連接PA、PB,此時(shí)PAB周長的最小值等于P′P″.

(2)如圖所示:由軸對稱性質(zhì)可得,

OP′=OP″=OP=6cm,POA=POA,POB=POB,

所以∠POP=2MON=2×30°=60°,

因?yàn)?/span>OP′=OP″,所以OPP是等邊三角形,

P′P″=6cm,

∴△APB的周長最小值為6cm,

故答案為6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】碼頭工人每天往一艘輪船上裝載30噸貨物,裝載完畢恰好用了8天時(shí)間.

(1)輪船到達(dá)目的地開始卸貨,平均卸貨速度v(單位:噸/)與卸貨天數(shù)t之間有怎樣的函數(shù)關(guān)系?

(2)由于遇到緊急情況,要求船上貨物不超過5天卸貨完畢,那么平均每天至少要缷貨多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON30°,點(diǎn)B1B2、B3…和A1A2、A3…分別在OMON上,且△A1B1A2、△A2B2A3、△A3B3A4、…分別為等邊三角形,已知OA11,則△A2018B2018A2019的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是直線AC上一點(diǎn),EFAEB的平分線.

1)如圖1,若EGBEC的平分線,求GEF的度數(shù);

2)如圖2,若GEBEC內(nèi),且CEG=3BEG,GEF=75°,求BEG的度數(shù).

3)如圖3,若GEBEC內(nèi),且CEG=nBEG,GEF,求BEG(用含n、α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題提出】如圖①,已知海島A到海岸公路BD的距離為AB,C為公路BD上的酒店,從海島A到酒店C,先乘船到登陸點(diǎn)D,船速為a,再乘汽車,車速為船速的n倍,點(diǎn)D選在何處時(shí),所用時(shí)間最短?
【特例分析】若n=2,則時(shí)間t= + ,當(dāng)a為定值時(shí),問題轉(zhuǎn)化為:在BC上確定一點(diǎn)D,使得AD+ 的值最。鐖D②,過點(diǎn)C做射線CM,使得∠BCM=30°.

(1)過點(diǎn)D作DE⊥CM,垂足為E,試說明:DE=
(2)【問題解決】請?jiān)趫D②中畫出所用時(shí)間最短的登陸點(diǎn)D′,并說明理由.
(3)【模型運(yùn)用】請你仿照“特例分析”中的相關(guān)步驟,解決圖①中的問題(寫出具體方案,如相關(guān)圖形呈現(xiàn)、圖形中角所滿足的條件、作圖的方法等).
(4)如圖③,海面上一標(biāo)志A到海岸BC的距離AB=300m,BC=300m.救生員在C點(diǎn)處發(fā)現(xiàn)標(biāo)志A處有人求救,
立刻前去營救,若救生員在岸上跑的速度都是6m/s,在海中游泳的速度都是2m/s,求救生員從C點(diǎn)出發(fā)到
達(dá)A處的最短時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的函數(shù)關(guān)系式為,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過定點(diǎn)A(4,0),B(﹣1,5),直線l1與l2相交于點(diǎn)C,

(1)求直線l2的解析式;

(2)求ADC的面積;

(3)在直線l2上存在一點(diǎn)F(不與C重合),使得ADFADC的面積相等,請求出F點(diǎn)的坐標(biāo);

(4)在x軸上是否存在一點(diǎn)E,使得BCE的周長最短?若存在請求出E點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B是線段AD上一動(dòng)點(diǎn),沿ADA2cm/s的速度往返運(yùn)動(dòng)1次,C是線段BD的中點(diǎn),AD10cm,設(shè)點(diǎn)B運(yùn)動(dòng)時(shí)間為t秒(0≤t≤10).

1)當(dāng)t2時(shí),①AB   cm.②求線段CD的長度.

2)①點(diǎn)B沿點(diǎn)AD運(yùn)動(dòng)時(shí),AB   cm;

②點(diǎn)B沿點(diǎn)DA運(yùn)動(dòng)時(shí),AB   cm.(用含t的代數(shù)式表示AB的長)

3)在運(yùn)動(dòng)過程中,若AB中點(diǎn)為E,則EC的長是否變化,若不變,求出EC的長;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線交于點(diǎn)O,點(diǎn)O又是正方形A1B1C1O的一個(gè)頂點(diǎn),而且這兩個(gè)正方形的邊長相等.無論正方形A1B1C1O繞點(diǎn)O怎樣轉(zhuǎn)動(dòng),兩個(gè)正方形重疊部分的面積,總等于一個(gè)正方形面積的(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案