如圖,拋物線y=﹣x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個命題:

①當x>0時,y>0; 

②若a=﹣1,則b=3;

③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;

④點C關(guān)于拋物線對稱軸的對稱點為E,點G,F(xiàn)分別在x軸和y軸上,當m=2時,四邊形EDFG周長的最小值為6

其中真命題的序號是      

 

 


 ②③ 

【考點】拋物線與x軸的交點.

【專題】計算題.

【分析】觀察函數(shù)圖象,利用拋物線在x軸上所對應(yīng)的自變量的取值范圍可對①進行判斷;拋物線的對稱軸為直線x=1,則利用對稱性可對②進行判斷;確定點Q比點P離對稱軸的距離要大,則根據(jù)二次函數(shù)的性質(zhì)可對③進行判斷;當m=2時,先確定D(1,4),C(0,3),E(2,3),利用勾股計算出DE=,作D點關(guān)于y軸的對稱點為D′,E點關(guān)于y軸的對稱點為E′,利用關(guān)于坐標軸對稱的點的坐標特征得到D′(﹣1,4),E′(2,﹣3),根據(jù)對稱的性質(zhì)得FD=FD′,GE=GE′,于是FD+FG+GE=D′E′,根據(jù)兩點之間線段最短可判斷此時四邊形EDFG周長的最小,然后利用勾股定理計算出D′E′=,于是可對④進行判斷.

【解答】解:當a<x<b時,y>0,所以①錯誤;

拋物線的對稱軸為直線x=﹣=1,當a=﹣1,即A(﹣1,0),而點A與點B為對稱點,則B(3,0),所以②正確;

因為x1<1<x2,所以點P和Q在對稱軸兩側(cè),而x1+x2>2,則點Q比點P離對稱軸的距離要大,所以y1>y2,所以③正確;

當m=2時,y=﹣x2+2x+3=﹣(x﹣1)2+4,則D(1,4),C(0,3),

∵點C關(guān)于拋物線對稱軸的對稱點為E,

∴E(2,3),

∴DE==,

作D點關(guān)于y軸的對稱點為D′,E點關(guān)于y軸的對稱點為E′,則D′(﹣1,4),E′(2,﹣3),

∴FD=FD′,GE=GE′,

∴FD+FG+GE=FD′+FG+GE′=D′E′,

∴此時四邊形EDFG周長的最小,

而D′E′==,

∴四邊形EDFG周長的最小值為+,所以④錯誤.

故答案為②③.

【點評】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì)和求最短路徑的解決方法.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


某產(chǎn)品生產(chǎn)車間有工人10名.已知每名工人每天可生產(chǎn)甲種產(chǎn)品12個或乙種產(chǎn)品10個,且每生產(chǎn)一個甲種產(chǎn)品可獲得利潤100元,每生產(chǎn)一個乙種產(chǎn)品可獲得利潤180元.在這10名工人中,車間每天安排x名工人生產(chǎn)甲種產(chǎn)品,其余工人生產(chǎn)乙種產(chǎn)品.

(1)請寫出此車間每天獲取利潤y(元)與x(人)之間的函數(shù)關(guān)系式;

(2)若要使此車間每天獲取利潤為14400元,要派多少名工人去生產(chǎn)甲種產(chǎn)品?

(3)若要使此車間每天獲取利潤不低于15600元,你認為至少要派多少名工人去生產(chǎn)乙種產(chǎn)品才合適?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


將矩形紙片ABCD按如圖方式折疊,BE、CF為折痕,折疊后點B和點D都落在點O處。若△EOF是等邊三角形,則的值為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知﹣1是關(guān)于x的方程x2+4x﹣m=0的一個根,則這個方程的另一個根是( 。

A.﹣3   B.﹣2   C.﹣1   D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


方程(x+2)(x﹣3)=x+2的解是      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


李明準備進行如下操作實驗,把一根長40cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.

(1)要使這兩個正方形的面積之和等于58cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認為這兩個正方形的面積之和不可能等于48cm2,你認為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一元二次方程的一次項系數(shù)、常數(shù)項分別是

A. 1,5           B. 1,-6        C. 5,-6         D. 5,6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知銳角A滿足關(guān)系式,則的值為 C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


多項式2(x2y2)(xy)2-(x2y2)2的值為零,則xy之間的關(guān)系是

A.相等

B.互為倒數(shù)

C.互為相反數(shù)

D.互為負倒數(shù)

查看答案和解析>>

同步練習冊答案