【題目】在等邊三角形ABC中,點(diǎn)F是線段AC上一點(diǎn),點(diǎn)E是線段BC上一點(diǎn),BF與AE交于點(diǎn)H,∠BAE=∠FBC,AG⊥BF,∠GAF:∠BEA=1:10,則∠BAE=_____°.

【答案】20

【解析】

ABE≌△BCF(ASA),推出∠AEB=BFC,由題意可以假設(shè)∠GAF=x,則∠AEB=BFC=10x,由∠AGF=90°,可得∠GAF+AFG=90°,由此構(gòu)建方程求出x即可解決問(wèn)題.

∵△ABC是等邊三角形,
AB=BC,ABE=C=60°,
∵∠BAE=FBC,
∴△ABE≌△BCF(ASA),
∴∠AEB=BFC,
∵∠GAF:BEA=1:10,
∴可以假設(shè):∠GAF=x,則∠AEB=BFC=10x,
AGBF,
∴∠AGF=90°,
∴∠GAF+AFG=90°,
x+(180°-10x)=90°,
x=10°,
∴∠AEB=100°,
∴∠BAE=180°-60°-100°=20°,
故答案為20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC在正方形網(wǎng)格中的位置如圖所示,則點(diǎn)P是△ABC的(
A.外心
B.內(nèi)心
C.三條高線的交點(diǎn)
D.三條中線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E是CD上一點(diǎn),DF⊥BE交BE的延長(zhǎng)線于點(diǎn)G,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△BCE≌△DCF.
(2)若∠DBE=∠CBE,求證:BD=BF.
(3)在(2)的條件下,求CE:ED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車(chē)去學(xué)校、乙同學(xué)騎自行車(chē)去學(xué)校.已知甲步行速度是乙騎自行車(chē)速度的,公交車(chē)的速度是乙騎自行車(chē)速度的2倍.甲乙兩同學(xué)同時(shí)從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.

1求乙騎自行車(chē)的速度;

2當(dāng)甲到達(dá)學(xué)校時(shí),乙同學(xué)離學(xué)校還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,E為AD的中點(diǎn),F(xiàn)為BC邊上一動(dòng)點(diǎn),設(shè)BF=t(0≤t≤2),線段EF的垂直平分線GH分別交邊CD,AB于點(diǎn)G,H,過(guò)E做EM⊥BC于點(diǎn)M,過(guò)G作GN⊥AB于點(diǎn)N.
(1)當(dāng)t≠2時(shí),求證:△EMF≌△GNH;
(2)順次連接E、H、F、G,設(shè)四邊形EHFG的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.

(1)CO是△BCD的高嗎?為什么?

(2)求∠5、∠7的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請(qǐng)參照?qǐng)D并思考,完成下列各題.

(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A,B兩點(diǎn)間的距離是_____;

(2)如果點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,那么終點(diǎn)表示的數(shù)是_____,A,B兩點(diǎn)間的距離為_____;

(3)如果點(diǎn)A表示數(shù)-4,將A點(diǎn)向右移動(dòng)168個(gè)單位長(zhǎng)度,再向左移動(dòng)256個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A、B兩點(diǎn)間的距離是_____;

(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示什么數(shù)?A,B兩點(diǎn)間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,M,N分別是CD,BC的中點(diǎn),且AMCD,ANBC。

(1)求證:∠BAD=2MAN

(2)連接BD,若∠MAN=70°,DBC=40°,求∠ADC。

查看答案和解析>>

同步練習(xí)冊(cè)答案