【題目】如圖1,在一條可以折疊的數(shù)軸上,點A,B分別表示數(shù)-9和4.
(1)A,B兩點之間的距離為________.
(2)如圖2,如果以點C為折點,將這條數(shù)軸向右對折,此時點A落在點B的右邊1個單位長度處,則點C表示的數(shù)是________.
(3)如圖1,若點A以每秒3個單位長度的速度沿數(shù)軸向右運動,點B以每秒2個單位長度的速度也沿數(shù)軸向右運動,那么經過多少時間,A、B兩點相距4個單位長度?
【答案】(1)13;(2)-2;(3)t= 9秒或17秒.
【解析】
(1)根據數(shù)軸上兩點的距離公式即可求解;
(2)設點C表示的數(shù)是x,分別表示出AC、BC,再根據AC-BC=1列出方程解答即可;
(3)運動t秒后,可知點A表示的數(shù)為-9+3t,點B表示的數(shù)為4+2t,再根據AB的距離為4,可得方程,解方程即可.
解:(1)AB=4-(-9)=13
(2)設點C表示的數(shù)是x,
則AC=x-(-9)=x+9,BC=4-x,
∵A落在點B的右邊1個單位,
∴AC-BC=1,
即AC-BC=x+9-(4-x)=2x+5=1,
解得:x=-2,
∴點C表示的數(shù)是-2.
故答案為:-2.
(3) 設運動t秒后,點A與點B相距4個單位,
由題意可知點A表示的數(shù)為-9+3t,點B表示的數(shù)為4+2t,
∴,
∴或
解得t=17或9.
答:運動9秒或17秒后,點A與點B相距4個單位.
科目:初中數(shù)學 來源: 題型:
【題目】對于任意有理數(shù)a,b,定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.
(1)求(﹣2)⊙3的值;
(2)對于任意有理數(shù)m,n,請你重新定義一種運算“⊕”,使得5⊕3=20,寫出你定義的運算:m⊕n= (用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一個內角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD= ;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是 ;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2)如圖3,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒
當t = 4時,求線段PQ的長度
(2)當t為何值時,△PCQ是等腰三角形?
(3)當t為何值時,△PCQ的面積等于16cm2?
(4)當t為何值時,△PCQ∽△ACB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人分別從A、B兩地同時出發(fā),相向而行,勻速前往B地、A地,兩人相遇時停留了4min,又各自按原速前往目的地,甲、乙兩人之間的距離y(m)與甲所用時間x(min)之間的函數(shù)關系如圖所示.有下列說法:
①A、B之間的距離為1200m; ②乙行走的速度是甲的1.5倍;③ b=960; ④ a=34.
以上結論正確的有( )
A. ①② B. ①②③ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為⊙O的內接三角形,BC=24 , ,點D為弧BC上一動點,CE垂直直線OD于點E, 當點D由B點沿弧BC運動到點C時,點E經過的路徑長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小剛將一個正方形紙片剪去一個寬為5cm的長條后,再從剩下的長方形紙片上剪去一個寬為6cm的長條.如果兩次剪下的長條面積正好相等,求兩個所剪下的長條的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點,若∠AEF=54,則∠B=( )
A. 54 B. 60 C. 72 D. 66
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com