【題目】有一個直角三角形紙片,,兩直角邊,.
(1)如圖1,若將沿著直線折疊,使頂點與點重合,求的長;
(2)如圖2,若將沿直線折疊,使落在斜邊上,且與重合,求的面積.
【答案】(1);(2).
【解析】
(1)根據(jù)折疊的性質(zhì)AE=EB,設(shè),則,在Rt△ACE中根據(jù)勾股定理即可求得CE的長度;
(2)根據(jù)折疊的性質(zhì)CF=FG,再根據(jù)等面積法求得CF的長度,即可求得△ACF的面積.
解:(1)∵將沿著直線折疊,使頂點與點重合,
∴AE=EB,即AE=BC-CE,
又∵,,,
設(shè),則
∴在Rt△ACE中,根據(jù)勾股定理
,即,
解得,即;
(2)∵將沿直線折疊,使落在斜邊上,且與重合,
∴CF=FG,,設(shè),
∵,,,
在Rt△ABC中,根據(jù)勾股定理
,即,
,即,
即,解得,即,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,分別為的中點,延長至點,使,連結(jié)和.
(1)求證:
(2)猜想:的面積與四邊形的面積的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件贏利40元,為了擴大銷售,增加利潤,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價2元,商場平均每天可多售出5件.求:
(1)若商場平均每天要贏利1400元,每件襯衫應(yīng)降價多少元?
(2)每件襯衫降價多少元時,商場平均每天贏利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
()對于任意的實數(shù),判斷方程的根的情況,并說明理由.
()若方程的一個根為,求出的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將舉行“數(shù)學(xué)知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據(jù)上面的信息,解決問題:
(1)試計算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,對角線與相交于點,是上任意一點,連接,過點作,垂足為點,與交于點.
(1)求證:;
(2)如圖2,若點在的延長線上,于點,與的延長線交于點,其他條件不變,判斷線段與的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。
A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動點,連結(jié)CP,將CP繞點C順時針方向旋轉(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,n),B(1,-4)是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線與軸的交點的坐標及△的面積;
(3)求不等式的解集(請直接寫出答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com