【題目】下列各多項(xiàng)式中,能用公式法分解因式的是(

A. a2-b2+2ab B. a2+b2+ab C. 25n2+15n+9 D. 4a2+12a+9

【答案】D

【解析】

利用完全平方公式及平方差公式判斷即可.

解:A、原式不能利用公式分解;
B、原式不能利用公式分解;
C、原式不能利用公式分解;
D、原式=(2a32,符合題意,
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線AB相交于A(﹣3,0),B(0,3)兩點(diǎn).

(1)求這條拋物線的解析式;

(2)設(shè)C是拋物線對稱軸上的一動點(diǎn),求使∠CBA=90°的點(diǎn)C的坐標(biāo);

(3)探究在拋物線上是否存在點(diǎn)P,使得△APB的面積等于3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動點(diǎn)C從原點(diǎn)O開始沿OA方向以每秒1個單位長度移動,動點(diǎn)D從點(diǎn)B開始沿BO方向以每秒1個單位長度移動,動點(diǎn)C、D同時出發(fā),當(dāng)動點(diǎn)D到達(dá)原點(diǎn)O時,點(diǎn)C、D停止運(yùn)動.

(1)直接寫出拋物線的解析式: ;

(2)求△CED的面積S與D點(diǎn)運(yùn)動時間t的函數(shù)解析式;當(dāng)t為何值時,△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時,在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)M,AOM的面積為3.

(1)求反比例函數(shù)的解析式;

(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點(diǎn)在反比例函數(shù)的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長為a,寬為b(a>b)的長方形的周長為14,面積為10,則ab(a+b)的值為(

A. 40 B. 50 C. 60 D. 70

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.

(1)求CD的長為
(2)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位的速度沿著邊BC向點(diǎn)C運(yùn)動,連接DP.設(shè)點(diǎn)P運(yùn)動的時間為t秒,則當(dāng)t為何值時,△PDC為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列從左到右的變形,屬于因式分解的是( )

A. (a+1)(a-1)=a2-1 B. 2a-2b=2(a-b)

C. a2-2a+1=a(a-2)+1 D. a+2b=(a+b)+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1nm(納米)=0.000 000 001m,則4.5納米用科學(xué)記數(shù)法表示為_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時路程與時間的函數(shù)圖象,問

(1)在剛出發(fā)時我公安快艇距走私船多少海里?
(2)計(jì)算走私船與公安快艇的速度分別是多少?
(3)寫出L1 , L2的解析式
(4)問6分鐘時兩艇相距幾海里.
(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?

查看答案和解析>>

同步練習(xí)冊答案