【題目】蔬菜經(jīng)營戶老王,近兩天經(jīng)營的是青菜和西蘭花.
(1)昨天的青菜和西蘭花的進價和售價如表,老王用600元批發(fā)青菜和西蘭花共200市斤,當天售完后老王一共能賺多少元錢?

青菜

西蘭花

進價(元/市斤)

2.8

3.2

售價(元/市斤)

4

4.5


(2)今天因進價不變,老王仍用600元批發(fā)青菜和西蘭花共200市斤.但在運輸中青菜損壞了10%,而西蘭花沒有損壞仍按昨天的售價銷售,要想當天售完后所賺的錢不少于昨天所賺的錢,請你幫老王計算,應怎樣給青菜定售價?(精確到0.1元)

【答案】
(1)解:設批發(fā)青菜x市斤,西蘭花y市斤;

根據(jù)題意得:

解得: ,

即批發(fā)青菜100市斤,西蘭花100市斤,

∴100×(4﹣2.8)+100×(4.5﹣3.2)=120+130=250(元);

答:當天售完后老王一共能賺250元錢;


(2)解:設給青菜定售價為a元/市斤;

根據(jù)題意得:100×(1﹣10%)a+100×4.5﹣600≥250,

解得:a≥ ≈4.44;

答:給青菜定售價為不低于4.5元/市斤


【解析】(1)設批發(fā)青菜x市斤,西蘭花y市斤,根據(jù)題意列出方程組,解方程組青菜青菜和西蘭花的重量,即可得出老王一共能賺的錢;(2)設給青菜定售價為a元;根據(jù)題意列出不等式,解不等式即可.本題考查了一元一次不等式的應用、二元一次方程組的應用;根據(jù)題意列出一元一次不等式、二元一次方程組是解決問題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AD=AE,B=C,BAE=CAD,BDCE相于點F.

求證:(1)AB=AC;(2)FB=FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為10厘米,點E在邊AB上,且AE=4厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.設運動時間為t秒.

(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,BPECQP是否全等?請說明理由;

(2)若點Q的運動速度與點P的運動速度不相等,則當t為何值時,能夠使BPECQP全等;此時點Q的運動速度為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.

應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三張背面完全相同的數(shù)字牌,它們的正面分別印有數(shù)字“1”、“2”、“3”,將它們背面朝上,洗勻后隨機抽取一張,記錄牌上的數(shù)字并把牌放回,再重復這樣的步驟兩次,得到三個數(shù)字a、b、c,則以a、b、c為邊長正好構成等邊三角形的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知 中, 厘米, 厘米,點 的中點.如果點 在線段 上以 厘米/秒的速度由 點向 點運動.同時,點 在線段 上由 點以 厘米/秒的速度向 點運動.設運動的時間為 秒.

(1)直接寫出:

BD=_______厘米; BP=________厘米;

CP=_______厘米; CQ=_______厘米;

(可用含 、a的代數(shù)式表示)

(2)若以 ,, 為頂點的三角形和以 ,, 為頂點的三角形全等,試求 、t的值;

(3)若點 以()中的運動速度從點 出發(fā),點 以原來的運動速度從點 同時出發(fā),都逆時針沿 三邊運動.設運動的時間為 秒;直接寫出t= 秒時點 與點 第一次相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一副秋千架,左圖是從正面看,當秋千繩子自然下垂時,踏板離地面0.5m(踏板厚度忽略不計), 右圖是從側(cè)面看,當秋千踏板蕩起至點B位置時,點B離地面垂直高度BC為1m,離秋千支柱AD的水平距離BE為1.5m(不考慮支柱的直徑).求秋千支柱AD的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在RtACB中,∠ACB=90°,點DAB的中點,點ECD的中點,過點CCFABAE的延長線于點F

1)求證:△ADE≌△FCE;

2)若∠DCF=120°,DE=2,求BC的長.

查看答案和解析>>

同步練習冊答案