【題目】已知:如圖,在ABCD中,點(diǎn)F在AB的延長線上,且BF=AB,連接FD,交BC于點(diǎn)E.

(1)說明DCE≌△FBE的理由;

(2)若EC=3,求AD的長.

【答案】(1)見解析26

【解析】

試題分析:(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊平行且相等,即可得AB=DC,ABDC,繼而可求得CDE=F,又由BF=AB,即可利用AAS,判定DCE≌△FBE;

(2)由(1),可得BE=EC,即可求得BC的長,又由平行四邊形的對邊相等,即可求得AD的長.

(1)證明:四邊形ABCD是平行四邊形,

AB=DC,ABDC,

∴∠CDE=F,

BF=AB,

DC=FB,

DCE和FBE中,

∴△DCE≌△FBE(AAS)

(2)解:∵△DCE≌△FBE,

EB=EC,

EC=3,

BC=2EB=6,

四邊形ABCD是平行四邊形,

AD=BC,

AD=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六棱柱中,棱的條數(shù)有( 。

A. 6 B. 10 C. 12 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順時針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將AB1C1繞點(diǎn)B1順時針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2在x軸上,將A1B1C2繞點(diǎn)C2順時針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(3,0),B(0,4),則點(diǎn)B100的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab2=﹣2,則﹣ab(a2b5﹣ab3+b)=( )
A.4
B.2
C.0
D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在形如ab=N的式子中,我們已經(jīng)研究兩種情況:①已知a和b,求N,這是乘方運(yùn)算,②已知b和N,求a,這是開放運(yùn)算,現(xiàn)在我們研究第三種情況:已知a和N,求b,我們把這種運(yùn)算叫做對數(shù)運(yùn)算.

定義:如果ab=N,(a>0,a≠1,N>0),則b叫做以a為底N的對數(shù),記作:b=logaN,例如求log28,因?yàn)?3=8,所以

log8=3,又比如2﹣3=log2=﹣3

(1)根據(jù)定義計(jì)算:

①log381= ②log10=1③如果logx16=4,那么x=

(2)設(shè)ax=M,ay=N,則logaM=x,logaN=y(a>0,a≠1,M、N均為正數(shù)),

ax.a(chǎn)y=ax+y=M.N

logaMN=x+y,即logaMN=logaM+logaN

這是對數(shù)運(yùn)算的重要性質(zhì)之一,進(jìn)一步,我們還可以得出:

logaM1M2M3…Mn= (其中M1、M2、M3…、Mn均為正數(shù)a>0,a≠1)

(3)請你猜想:loga= (a>0,a≠1,M、N均為正數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩人騎自行車?yán)@800米圓形跑道行駛,他們從同一地點(diǎn)出發(fā),如果方向相反,每一分二十秒相遇一次,如果方向相同,每十三分二十秒相遇一次.假設(shè)二人速度不等,求各人速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A.(a﹣1)2=a2﹣1
B.(2a)2=2a2
C.a2a3=a6
D.aa2=a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點(diǎn)E,ADBC于點(diǎn)D,BAD=45°,AD與BE交于點(diǎn)F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將點(diǎn)A(3,2)向左平移4個單位長度得點(diǎn)A′,則點(diǎn)A′關(guān)于y軸對稱的點(diǎn)的坐標(biāo)是(

A.(﹣3,2) B.(﹣1,2) C.(1,﹣2) D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案