如圖,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求證:△ABD∽△CBE.

證明:∵在△ABC中,AB=AC,BD=CD,∴AD⊥BC。
∵CE⊥AB,∴∠ADB=∠CEB=90°,。
又∵∠B=∠B,∴△ABD∽△CBE。

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

提出問題

如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
類比探究
如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
拓展延伸
如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,△是等邊三角形,點、分別在邊上,

(1)求證:△∽△;(2)如果,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在△ABC中,∠ACB=90°,∠A<45°,點O為AB中點,一個足夠大的三角板的直角頂點與點O重合,一邊OE經(jīng)過點C,另一邊OD與AC交于點M.

(1)如圖1,當∠A=30°時,求證:MC2=AM2+BC2;
(2)如圖2,當∠A≠30°時,(1)中的結(jié)論是否成立?如果成立,請說明理由;如果不成立,請寫出你認為正確的結(jié)論,并說明理由;
(3)將三角形ODE繞點O旋轉(zhuǎn),若直線OD與直線AC相交于點M,直線OE與直線BC相交于點N,連接MN,則MN2=AM2+BN2成立嗎?
答:   (填“成立”或“不成立”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,點B在線段AC上,點D,E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.

(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q;
(i)當點P與A,B兩點不重合時,求的值;
(ii)當點P從A點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)

(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為     ;
②當AC=3,BC=4時,AD的長為     
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(2013年四川南充8分)如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC邊上一點(不與B,C重合),過點P作∠APE=∠B,PE交CD 于E.

(1)求證:△APB∽△PEC;
(2)若CE=3,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖1放置的一個機器零件,若其主(正)視圖如圖2,則其俯視圖是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

圖中幾何體的主視圖是(   )

查看答案和解析>>

同步練習冊答案