【題目】某公司從2009年開(kāi)始投入技術(shù)改造資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如表:
年度 | 2009 | 2010 | 2011 | 2012 |
投入技改資金x(萬(wàn)元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本y(萬(wàn)元/件) | 7.2 | 6 | 4.5 | 4 |
(1)試判斷:從上表中的數(shù)據(jù)看出,y與x符合你學(xué)過(guò)的哪個(gè)函數(shù)模型?請(qǐng)說(shuō)明理由,并寫(xiě)出它的解析式.
(2)按照上述函數(shù)模型,若2013年已投入技改資金5萬(wàn)元
①預(yù)計(jì)生產(chǎn)成本每件比2012年降低多少元?
②如果打算在2013年把每件產(chǎn)品的成本降低到3.2萬(wàn)元,則還需投入技改資金多少萬(wàn)元?
【答案】(1)反比例函數(shù)關(guān)系y=
(2)①降低0.4萬(wàn)元 ②0.63萬(wàn)元
【解析】
試題(1)根據(jù)實(shí)際題意和數(shù)據(jù)特點(diǎn)分情況求解,根據(jù)排除法可知其為反比例函數(shù),利用待定系數(shù)法求解即可;
(2)直接把x=5萬(wàn)元和y=3.2分別代入函數(shù)解析式即可求解.
解:(1)由表中數(shù)據(jù)知,x、y關(guān)系:
xy=2.5×7.5=3×6=4×4.5=4.5×4=18
∴xy=18
∴x、y不是一次函數(shù)關(guān)系
∴表中數(shù)據(jù)是反比例函數(shù)關(guān)系y=;
(2)①當(dāng)x=5萬(wàn)元時(shí),y=3.6.
4﹣3.6=0.4(萬(wàn)元),
∴生產(chǎn)成本每件比2009年降低0.4萬(wàn)元.
②當(dāng)y=3.2萬(wàn)元時(shí),3.2=.
∴x=5.625(1分)
∴5.625﹣5=0.625≈0.63(萬(wàn)元)
∴還約需投入0.63萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=﹣與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接AC、BC.
(1)求線(xiàn)段AC的長(zhǎng);
(2)如圖2,E為拋物線(xiàn)的頂點(diǎn),F為AC上方的拋物線(xiàn)上一動(dòng)點(diǎn),M、N為直線(xiàn)AC上的兩動(dòng)點(diǎn)(M在N的左側(cè)),且MN=4,作FP⊥AC于點(diǎn)P,FQ∥y軸交AC于點(diǎn)Q.當(dāng)△FPQ的面積最大時(shí),連接EF、EN、FM,求四邊形ENMF周長(zhǎng)的最小值.
(3)如圖3,將△BCO沿x軸負(fù)方向平移個(gè)單位后得△B'C'O',再將△B'C'O'繞點(diǎn)O'順時(shí)針旋轉(zhuǎn)α度,得到△B″C″O'(其中0°<α<180°),旋轉(zhuǎn)過(guò)程中直線(xiàn)B″C″與直線(xiàn)AC交于點(diǎn)G,與x軸交于點(diǎn)H,當(dāng)△AGH是等腰三角形時(shí),求α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)-2≤x≤1時(shí),二次函數(shù)y=-(x-m)2+m2+1有最大值3,則實(shí)數(shù)m的值為( 。
A. 2或-B. 或-C. 或-D. 或-
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上,若BC=8cm,AD=6cm,且PN=2PQ,則矩形PQMN的周長(zhǎng)為( 。
A. 14.4cmB. 7.2cmC. 11.52cmD. 12.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,過(guò)點(diǎn)B的直線(xiàn)與對(duì)角線(xiàn)AC、邊AD分別交于點(diǎn)E和F.過(guò)點(diǎn)E作EG∥BC,交AB于G,則圖中相似三角形有( )
A. 4對(duì)B. 5對(duì)C. 6對(duì)D. 7對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在建立了平面直角坐標(biāo)系的正方形網(wǎng)格中,A(2,2),B(1,0),C(3,1)
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1.
(2)畫(huà)出將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,所得的△A2B2C2.并直接寫(xiě)出A2點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動(dòng)點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動(dòng),點(diǎn)Q以1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△APQ是直角三角形時(shí),t的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,有“拋物線(xiàn)系”y=-(x-m)2+4m-3,頂點(diǎn)為點(diǎn)P,這些拋物線(xiàn)的形狀與拋物線(xiàn) y=-x2 相同,但頂點(diǎn)位置不同.
(1)填寫(xiě)下表,并說(shuō)出:在m取不同數(shù)值時(shí),點(diǎn)P位置的變化具有什么特征?
m的值 | … | -1 | 0 | 1 | 2 | … |
點(diǎn)P坐標(biāo) | … | … |
(2)若拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=1,則可確定m的值.點(diǎn)M(p,q)為此拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且﹣1<p<2,而直線(xiàn)y=kx-4(k≠0)始終經(jīng)過(guò)點(diǎn)M.
①求此拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo);
②求k的取值范圍.
(3)若點(diǎn)Q在x軸上,點(diǎn)S(0,-1)在y軸上,點(diǎn)R在坐標(biāo)平面內(nèi),且以點(diǎn)P,Q,R,S為頂點(diǎn)的四邊形是正方形,試直接寫(xiě)出所有點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對(duì)角線(xiàn)BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線(xiàn);
(2)EF2=BE2+DF2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com