【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于A、B兩點,與x軸交于點C,過點A作AH⊥x軸于點H,點O是線段CH的中點,AC=4 ,cos∠ACH= ,點B的坐標為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.

【答案】
(1)解:∵AH⊥x軸于點H,AC=4 ,cos∠ACH=

= = ,

解得:HC=4,

∵點O是線段CH的中點,

∴HO=CO=2,

∴AH= =8,

∴A(﹣2,8),

∴反比例函數(shù)解析式為:y=﹣ ,

∴B(4,﹣4),

∴設一次函數(shù)解析式為:y=kx+b,

,

解得:

∴一次函數(shù)解析式為:y=﹣2x+4;


(2)由(1)得:△BCH的面積為: ×4×4=8.
【解析】(1)首先利用銳角三角函數(shù)關系得出HC的長,再利用勾股定理得出AH的長,即可得出A點坐標,進而求出反比例函數(shù)解析式,再求出B點坐標,即可得出一次函數(shù)解析式;(2)利用B點坐標的縱坐標再利用HC的長即可得出△BCH的面積.
【考點精析】根據(jù)題目的已知條件,利用解直角三角形的相關知識可以得到問題的答案,需要掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖象恰好過點D,則k的值為(
A.6
B.﹣6
C.9
D.﹣9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了推進球類運動的普及,成立了多個球類運動社團,為此,學生會采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球四個項目調(diào)查了若干名學生的興趣愛好(要求每位同學只能選擇其中一種自己喜歡的球類運動),并將調(diào)查結(jié)果繪制成了如下條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,解答下列問題:
(1)求扇形統(tǒng)計圖中,“乒乓球”所對應的扇形的圓心角為度;
(2)請將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)若該學校共有學生1600人,根據(jù)以上數(shù)據(jù)分析,試估計選擇排球運動的同學約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知等邊ABC的邊長為a,P是ABC內(nèi)一點,PD∥AB,PE∥BC,PF∥AC,點D、E、F分別在BC、AC、AB上,猜想:PD+PE+PF等于多少,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息,回答下列問題:
(1)扇形統(tǒng)計圖中“優(yōu)秀”所對應的扇形的圓心角為度,并將條形統(tǒng)計圖補充完整
(2)此次比賽有四名同學活動滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為A(-4,5),C(-1,3).

(1)請在網(wǎng)格平面內(nèi)作出平面直角坐標系(不寫作法);

(2)請作出△ABC關于y軸對稱△A'B'C';

(3)分別寫出A'、B'、C'的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E是邊BC的中點,AE⊥BD,垂足為F,則tan∠BDE的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點C、D,與邊BC相交于點F,OA與CD相交于點E,連接FE并延長交AC邊于點G.
(1)求證:DF∥AO;
(2)若AC=6,AB=10,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園手機”現(xiàn)象越來越受到社會的關注.小麗在“統(tǒng)計實習”活動中隨機調(diào)查了學校若干名學生家長對“中學生帶手機到學校”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次調(diào)查的家長總數(shù)及家長表示“無所謂”的人數(shù),并補全圖①;
(2)求圖②中表示家長“無所謂”的圓心角的度數(shù);
(3)從這次接受調(diào)查的家長中,隨機抽查一個,恰好是“不贊成”態(tài)度的家長的概率是多少.

查看答案和解析>>

同步練習冊答案