【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c與x軸交于點A,C(1,0),與y軸交于點B(0,﹣3).
(1)求拋物線的解析式;
(2)點P是直線AB下方的拋物線上一動點,過點P作x軸的垂線,垂足為點F,交直線AB于點E,作PD⊥AB于點D.當(dāng)△PDE的周長最大時,求出點P的坐標(biāo).
【答案】(1)y=x2+2x﹣3;(2)P(-,-).
【解析】
(1)根據(jù)待定系數(shù)法即可求解;
(2)先求出點A的坐標(biāo),得出∠AEF=45°,再根據(jù),可得△PDE是等腰直角三角形,從而得到△PDE的周長與PE的關(guān)系式,可知PE最大時,△PDE的周長最大,設(shè)點F的橫坐標(biāo)為m,將PE用含m的式子表示,最后根據(jù)二次函數(shù)的性質(zhì)即可求解.
(1)∵拋物線y=x2+bx+c經(jīng)過點B(0,﹣3),C(1,0),
∴c=-3,1+b+c=0,
解得:b=2,c=-3,
∴拋物線的解析式為:y=x2+2x﹣3;
(2)在y=x2+2x﹣3中,y=0時,x1=1,x2=﹣3,
∴A(﹣3,0),
∵B(0,-3),
∴OA=OB=3,
∴∠BAO=45°,
∵PF⊥x軸,
∴∠AEF=45°,
可得△PDE是等腰直角三角形,
由A(﹣3,0),B(0,3)得直線AB的解析式為:y=-x-3,
C△PDE=PE+PD+DP
=PE+PE+PE
=(+1)PE,
設(shè)P(m,m2+2m﹣3),則E(m,-m-3),PE=-m2-3m
C△PDE=(+1)(-m2-3m)
=-(+1)(m+)2+(+1),
∴當(dāng)m=-時,△PDE的周長越大,此時P點坐標(biāo)為(-,-).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠C=90°,點D是BC的中點,將△ABC沿著直線EF折疊,使點A與點D重合,折痕交AB于點E,交AC于點F,那么sin∠BED的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當(dāng)旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過A,B,C三點.
(1)求拋物線的解析式。
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點O(0,0).A(8,4),與x軸交于另一點B,且對稱軸是直線x=3.
(1)求該二次函數(shù)的解析式;
(2)若M是OB上的一點,作MN∥AB交OA于N,當(dāng)△ANM面積最大時,求M的坐標(biāo);
(3)P是x軸上的點,過P作PQ⊥x軸與拋物線交于Q.過A作AC⊥x軸于C,當(dāng)以O,P,Q為頂點的三角形與以O,A,C為頂點的三角形相似時,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與計算,請閱讀以下材料,并完成相應(yīng)的問題.
角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則=.下面是這個定理的部分證明過程.
證明:如圖2,過C作CE∥DA.交BA的延長線于E.…
任務(wù):(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,則△ABD的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形ABCO的點B坐標(biāo)(3,3),點A、C分別在y軸、x軸上,對角線AC上一動點E,連接BE,過E作DE⊥BE交OC于點D.若點D坐標(biāo)為(2,0),則點E坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=α,點D、E分別在邊AB、AC上,AD=AE,連接DC,點F、P、G分別為DE、DC、BC的中點.
(1)觀察猜想:圖1中,線段PF與PG的數(shù)量關(guān)系是 ,∠FPG= (用含α的代數(shù)式表示)
(2)探究證明:當(dāng)△ADE繞點A旋轉(zhuǎn)到如圖2所示的位置時,小新猜想(1)中的結(jié)論仍然成立,請你證明小新的猜想.
(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=2,AB=6,請直接寫出PF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(-1,0),B(3,0),交y軸的正半軸于點C,對稱軸交拋物線于點D,交x軸與點E,則下列結(jié)論:①2a+b=0;②b+2c>0;③a+b>am+bm(m為任意實數(shù));④一元二次方程有兩個不相等的實數(shù)根;⑤當(dāng)△BCD為直角三角形時,a的值有2個;⑥若點P為對稱軸上的動點,則有最大值,最大值為.其中正確的有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com