10.小聰和小敏在研究絕對值的問題時,遇到了這樣一道題:
當(dāng)式子|x-1|+|x+5|取最小值時,x應(yīng)滿足的條件是-5≤x≤1,此時的最小值是6.
小聰說:利用數(shù)軸求線段的長可以解決這個問題.如圖,點(diǎn)A,B對應(yīng)的數(shù)分別為-5,1,則線段AB的長為6,我發(fā)現(xiàn)也可通過|1-(-5)|或|-5-1|來求線段AB的長,即數(shù)軸上兩點(diǎn)間的線段的長等于它們所對應(yīng)的兩數(shù)差的絕對值.

小敏說:我明白了,若點(diǎn)C在數(shù)軸上對應(yīng)的數(shù)為x,線段AC的長就可表示為|x-(-5)|,那么|x-1|表示的是線段BC的長.
小聰說:對,求式子|x-1|+|x+5|的最小值就轉(zhuǎn)化為數(shù)軸上求線段AC+BC長的最小值,而點(diǎn)C在線段AB上時AC+BC=AB最小,最小值為6.
小敏說:點(diǎn)C在線段AB上,即x取-5,1之間的有理數(shù)(包括-5,1),因此相應(yīng)x的取值范圍可表示為-5≤x≤1時,最小值為6.
請你根據(jù)他們的方法解決下面的問題:
(1)小敏說的|x-1|表示的是線段BC的長;
(2)當(dāng)式子|x-3|+|x+2|取最小值時,x應(yīng)滿足的條件是-2≤x≤3;
(3)當(dāng)式子|x-2|+|x+3|+|x+4|取最小值時,x應(yīng)滿足的條件是x=-3;
(4)當(dāng)式子|x-a|+|x-b|+|x-c|+|x-d|(a<b<c<d)取最小值時,x應(yīng)滿足的條件是b≤x≤c,此時的最小值是c-b+d-a.

分析 根據(jù)絕對值的性質(zhì)以及題意即可求出答案.

解答 解:(1)由題意可知:|x-1|=BC;
(2)由題意可知:-2≤x≤3;
(3)|x-2|+|x+3|+|x+4|表示數(shù)x分別與-4、-3、2的距離之和,
由題意可知:當(dāng)-3≤x≤2時,|x+3|+|x-2|可取得最小值,
∴當(dāng)x=-3時,|x-2|+|x+3|+|x+4|可取得最小值,
(4)由題意可知:|x-a|+|x-b|+|x-c|+|x-d|表示數(shù)x分別與a、b、c、d的距離之和,
∴b≤x≤c時,x-a|+|x-b|+|x-c|+|x-d|的最小值為:c-b+d-a.
故答案為:-5≤x≤1,6
(1)BC
(2)-2≤x≤3
(3)x=-3
(4)b≤x≤c,c-b+d-a.

點(diǎn)評 本題考查絕對值的性質(zhì),同時考查學(xué)生閱讀理解的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.在x2-y2,-x2+y2,(-x)2+(-y)2,x4-y2中能用平方差公式分解因式的有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤分為6個大小相同的扇形,指針的位置固定,轉(zhuǎn)動的轉(zhuǎn)盤停止后,指針指向陰影區(qū)域(指針指向兩個扇形的交線時,當(dāng)作指向右邊的扇形)的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.如圖,△ABC中,D、E分別是AB、AC邊上一點(diǎn),連接DE.請你添加一個條件,使△ADE∽△ABC,則你添加的這一個條件可以是∠ADE=∠B(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.在Rt△ABC中,∠ACB=90°,O為AB邊上的一點(diǎn),且tanB=$\frac{1}{2}$,點(diǎn)D為AC邊上的動點(diǎn)(不與點(diǎn)A,C重合),將線段OD繞點(diǎn)O順時針旋轉(zhuǎn)90°,交BC于點(diǎn)E.
(1)如圖1,若O為AB邊中點(diǎn),D為AC邊中點(diǎn),則$\frac{OE}{OD}$的值為$\frac{1}{2}$;
(2)若O為AB邊中點(diǎn),D不是AC邊的中點(diǎn),
①請根據(jù)題意將圖2補(bǔ)全;
②小軍通過觀察、實(shí)驗(yàn),提出猜想:點(diǎn)D在AC邊上運(yùn)動的過程中,(1)中$\frac{OE}{OD}$的值不變.小軍把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了求$\frac{OE}{OD}$的值的幾種想法:
想法1:過點(diǎn)O作OF⊥AB交BC于點(diǎn)F,要求$\frac{OE}{OD}$的值,需證明△OEF∽△ODA.
想法2:分別取AC,BC的中點(diǎn)H,G,連接OH,OG,要求$\frac{OE}{OD}$的值,需證明△OGE∽△OHD.
想法3:連接OC,DE,要求$\frac{OE}{OD}$的值,需證C,D,O,E四點(diǎn)共圓.

請你參考上面的想法,幫助小軍寫出求$\frac{OE}{OD}$的值的過程?(一種方法即可);
(3)若$\frac{BO}{BA}$=$\frac{1}{n}$(n≥2且n為正整數(shù)),則$\frac{OE}{OD}$的值為$\frac{1}{2n-2}$(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.規(guī)定一種新運(yùn)算:a*b=a-b,當(dāng)a=5,b=3時,求(a2b)*(3ab+5a2b-4ab)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.下列運(yùn)算正確的是(  )
A.3x2+2x3=5x5B.(π-3.14)0=0C.3-2=-6D.(x32=x6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.為順利通過“國家文明城市”驗(yàn)收,東營市政府?dāng)M對城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,需在40天內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時間的2倍,若甲、乙兩工程隊(duì)合作只需10天完成.
(1)甲、乙兩個工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若甲工程隊(duì)每天的工程費(fèi)用是4.5萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,請你設(shè)計(jì)一種方案,既能按時完工,又能使工程費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.定義新運(yùn)算:對于任意有理數(shù)a、b,都有a⊕b=a(a-b)+1,等式的右邊是通常的有理數(shù)運(yùn)算,例如2⊕5=2(2-5)+1=2×(-3)+1.
(1)求(-2)⊕3.
(2)若3⊕x=-5,求x的值.

查看答案和解析>>

同步練習(xí)冊答案