【題目】在學(xué)校組織的游藝晚會(huì)上,擲飛鏢游戲規(guī)則如下:如圖,擲到A區(qū)和B區(qū)的得分不同,A區(qū)為小圓內(nèi)部分,B區(qū)為大圓內(nèi)小圓外部分(擲中一次記一個(gè)點(diǎn)).現(xiàn)統(tǒng)計(jì)小華、小明和小芳擲中與得分情況如圖所示,依此方法計(jì)算小芳的得分為(  )

A. 76 B. 74 C. 72 D. 70

【答案】B

【解析】

首先設(shè)擲到A區(qū)和B區(qū)的得分分別為x、y分,根據(jù)圖示可得等量關(guān)系:①擲到A區(qū)5個(gè)的得分+擲到B區(qū)3個(gè)的得分=77分;②擲到A區(qū)3個(gè)的得分+擲到B區(qū)5個(gè)的得分=75分,根據(jù)等量關(guān)系列出方程組,解方程組即可得到擲中A區(qū)、B區(qū)一次各得多少分;由圖示可得求的是擲到A區(qū)4個(gè)的得分+擲到B區(qū)4個(gè)的得分,根據(jù)解出的數(shù)代入計(jì)算即可.

設(shè)擲到A區(qū)和B區(qū)的得分分別為x、y分,依題意得:

,解得:

所以2x+6y=74,
答:依此方法計(jì)算小芳的得分為74.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、EBC邊上的點(diǎn),連接AD,AE,以△ADE的邊AE所在直線為對(duì)稱軸作△ADE的軸對(duì)稱圖形△AD′E,連接D′C,若BD=CD′;

(1)求證:△ABD≌△ACD′;

(2)若∠BAC=120°,求∠DAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖象與過(guò)的直線交于點(diǎn)P,與x軸、y軸分別相交于點(diǎn)C和點(diǎn)D

求直線AB的解析式及點(diǎn)P的坐標(biāo);

連接AC,求的面積;

設(shè)點(diǎn)Ex軸上,且與C、D構(gòu)成等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD邊長(zhǎng)為1,∠EAF=45°,AE=AF,則有下列結(jié)論:
①∠1=∠2=22.5°;
②點(diǎn)C到EF的距離是 -1;
③△ECF的周長(zhǎng)為2;
④BE+DF>EF.
其中正確的結(jié)論是 . (寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD各個(gè)頂點(diǎn)的坐標(biāo)分別為(﹣2,8),(﹣11,6),(﹣14,0),(0,0).

(1)求這個(gè)四邊形的面積.

(2)如果把原來(lái)的四邊形ABCD向下平移3個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度后得到新的四邊形A1B2C3D4,請(qǐng)直接寫(xiě)出平移后的四邊形各點(diǎn)的坐標(biāo)和新四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示我國(guó)漢代數(shù)學(xué)家趙爽在注解《周脾算經(jīng)》時(shí)給出的“趙爽弦圖”,圖中的四個(gè)直角三角形是全等的,如果大正方形ABCD的面積是小正方形EFGH面積的13倍,那么tan∠ADE的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接菱形各邊的中點(diǎn)所形成的四邊形是(
A.等腰梯形
B.矩形
C.菱形
D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象是第一、三象限的角平分線.

實(shí)驗(yàn)與探究:由圖觀察易知A(0,2)關(guān)于直線的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3) 、C(-2,5) 關(guān)于直線的對(duì)稱點(diǎn)B′、C′的位置,并寫(xiě)出它們的坐標(biāo): B′____________C′___________;

歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,n)關(guān)于第一、三象限的角平分線的對(duì)稱點(diǎn)的坐標(biāo)為____________;

運(yùn)用與拓廣:已知兩點(diǎn)D(0,-3)、E(-1,-4),試在直線上確定一點(diǎn)Q,使點(diǎn)Q到D、E兩點(diǎn)的距離之和最小,并求出Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線L:y=-x+2x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動(dòng)點(diǎn)MA點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)△COM的面積SM的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(3)當(dāng)t為何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案