如圖,已知⊙O過(guò)正方形ABCD的頂點(diǎn)A、B,且與CD邊相切,若正方形的邊長(zhǎng)為2,則圓的半徑為( )

A.
B.
C.
D.1
【答案】分析:過(guò)點(diǎn)O作OE⊥AB,連接OB,在Rt△OBE中,根據(jù)勾股定理可將半徑OB的長(zhǎng)求出.
解答:解:過(guò)點(diǎn)O作OE⊥AB,交AB于點(diǎn)E,連接OB,
設(shè)⊙O的半徑為R,∵正方形的邊長(zhǎng)為2,CD與⊙O相切,
∴OF=R,
∴OE=2-R,
在Rt△OBE中,
OE2+EB2=OB2,即(2-R)2+12=R2,解得R=
故選B.
點(diǎn)評(píng):本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A(-3,1),B(-1,-1),C(-2,0),曲線ACB是以C為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形,把此曲線沿x軸正方向平移,當(dāng)點(diǎn)C運(yùn)動(dòng)到C′(2,0)時(shí),曲線ACB描過(guò)的面積為
8
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A(-3,5)在拋物線y=
12
x2+c的圖象上,點(diǎn)P從拋物線的頂點(diǎn)Q出發(fā),沿y軸以每秒1個(gè)單位的速度向正方向運(yùn)動(dòng),連接AP并延長(zhǎng),交拋物線于點(diǎn)B,分別過(guò)點(diǎn)A、B作x軸的垂線,垂足為C、D,連接AQ、BQ.
(1)求拋物線的解析式;
(2)當(dāng)A、Q、B三點(diǎn)構(gòu)成以AQ為直角邊的直角三角形時(shí),求點(diǎn)P離開(kāi)點(diǎn)Q多少時(shí)間?
(3)試探索當(dāng)AP、AC、BP、BD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)時(shí),點(diǎn)P離開(kāi)點(diǎn)Q的時(shí)刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭西縣模擬)如圖,已知菱形ABCD的邊長(zhǎng)為2
3
,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn),點(diǎn)D的坐標(biāo)為(-
3
,3),拋物線y=ax2+b.(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移,過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF,設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<3),是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:點(diǎn)A(3,0),B(0,4)分別是x軸,y軸上的點(diǎn),動(dòng)點(diǎn)P和Q分別從原點(diǎn)出發(fā),沿x軸,y軸正方向運(yùn)動(dòng),速度分別是2個(gè)單位長(zhǎng)度/秒和1單位長(zhǎng)度/秒,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)1.5<t<4時(shí),連接PQ交直線AB于點(diǎn)C,過(guò)點(diǎn)Q作QD∥BA交x軸正方向于點(diǎn)D.
(1)求AB的長(zhǎng)度;
(2)試證明QD=DP;
(3)當(dāng)以O(shè),A,C為頂點(diǎn)的三角形是等腰三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省蘇州市太倉(cāng)市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,已知點(diǎn)A(-3,5)在拋物線y=x2+c的圖象上,點(diǎn)P從拋物線的頂點(diǎn)Q出發(fā),沿y軸以每秒1個(gè)單位的速度向正方向運(yùn)動(dòng),連接AP并延長(zhǎng),交拋物線于點(diǎn)B,分別過(guò)點(diǎn)A、B作x軸的垂線,垂足為C、D,連接AQ、BQ.
(1)求拋物線的解析式;
(2)當(dāng)A、Q、B三點(diǎn)構(gòu)成以AQ為直角邊的直角三角形時(shí),求點(diǎn)P離開(kāi)點(diǎn)Q多少時(shí)間?
(3)試探索當(dāng)AP、AC、BP、BD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)時(shí),點(diǎn)P離開(kāi)點(diǎn)Q的時(shí)刻.

查看答案和解析>>

同步練習(xí)冊(cè)答案