【題目】已知:AB是⊙O的直徑,直線CP切⊙O于點C,過點B作BD⊥CP于D.
(1)求證:CB2=ABDB;
(2)若⊙O的半徑為2,∠BCP=30°,求圖中陰影部分的面積.
【答案】
(1)證明:如圖,連接OC,
∵直線CP是⊙O的切線,
∴∠BCD+∠OCB=90°,
∵AB是直徑,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°
∴∠BCD=∠ACO,
又∵∠BAC=∠ACO,
∴∠BCD=∠BAC,
又∵BD⊥CP
∴∠CDB=90°,
∴∠ACB=∠CDB=90°
∴△ACB∽△CDB,
∴ =ABDB
(2)解:∵直線CP是⊙O的切線,∠BCP=30°,
∴∠COB=2∠BCP=60°,
∴△OCB是正三角形,
∵⊙O的半徑為2,
∴S△OCB= ,S扇形OCB= π,
∴陰影部分的面積=S扇形OCB﹣S△OCB=
【解析】(1)由CP是⊙O的切線,得出∠BCD=∠BAC,AB是直徑,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出結(jié)論△ACB∽△CDB;(2)求出△OCB是正三角形,陰影部分的面積=S扇形OCB﹣S△OCB , 即可得出答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點E,交 于點D,連接CD、OD,以下三個結(jié)論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項,其中所有正確結(jié)論的序號是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點 的坐標(biāo)為,以 A 為頂點的的兩邊始終與 軸交于 、兩點(在 左面),且.
(1)如圖,連接,當(dāng) 時,試說明:.
(2)過點 作軸,垂足為,當(dāng)時,將沿所在直線翻折,翻折后邊 交 軸于點 ,求點 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年5月中旬,中國和俄羅斯海軍在地中海海域舉行了代號為“海上聯(lián)合﹣2015(1)”的聯(lián)合軍事演習(xí),這是中國第一次地中海舉行軍事演習(xí),也是這個海軍距本土最遠(yuǎn)的一次軍演,某天,“臨沂艦”、“濰坊艦”兩艦同時從A、B兩個港口出發(fā),均沿直線勻速駛向演習(xí)目標(biāo)地海島C,兩艦艇都到達(dá)C島后演習(xí)第一階段結(jié)束,已知B剛位于A港、C港之間,且A、B、C在一條直線上,如圖所示,l臨、l濰分別表示“臨沂艦”、“濰坊艦”離B港的距離行駛時間x(h)變化的圖象.
(1)A港與C島之間的距離為_____;
(2)分別求出“臨沂艦”、“濰坊艦”的航速即相遇時行駛的時間;
(3)若“臨沂艦”、“濰坊艦”之間的距離不超過2km時就屬于最佳通訊距離,求出兩艦艇在演習(xí)第一階段處于最佳通訊距離時的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下列各數(shù)填入相應(yīng)的集合中.
2,0,2π,,2018,﹣0.030030003…
有理數(shù)集合:{___________________________________________…};
無理數(shù)集合:{___________________________________________…};
非負(fù)整數(shù)集合:{_________________________________________…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到某服裝專賣店去做社會調(diào)查,了解到該專賣店為了微勵營業(yè)員的工作積極性,實行“月總收入=基本工資(固定)+計付獎金”的方法計算薪資,并獲得如下信息;
營業(yè)員 | 小張 | 小王 |
月銷售件數(shù) | 200 | 150 |
月總收入/元 | 1400 | 1250 |
銷售每件獎勵a元,晉業(yè)員月基本工資為b元.
(1)列方程組求a,b的值.
(2)假設(shè)月銷售件數(shù)為x,月總收入為y元,請寫出y與x的函數(shù)關(guān)系式,并求出營業(yè)員小張上個月總收入是1700元時,小張上個月賣了多少件服裝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y與x﹣1成正比例,且當(dāng)x=3時,y=4.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)當(dāng)x=﹣1時,求y的值;
(3)當(dāng)﹣3<y<5時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,
b滿足 |a+2|+=0,點C的坐標(biāo)為(0,3).
(1)求a,b的值及S三角形ABC;
(2)若點M在x軸上,且S三角形ACM=S三角形ABC,試求點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com