【題目】如圖,直角坐標系中,A是反比例函數(shù)y=(x>0)圖象上一點,B是y軸正半軸上一點,以OA,AB為鄰邊作ABCO.若點C及BC中點D都在反比例函數(shù)y=(k<0,x<0)圖象上,則k的值為( 。
A. ﹣3B. ﹣4C. ﹣6D. ﹣8
【答案】C
【解析】
如圖,連接AC,交OB于E,設A點坐標為(a,),由平行四邊形性質可得CE=AE,由E點在y軸上可得C點橫坐標為-a,根據(jù)C點在y=(k<0,x<0)圖象上,可得C點坐標為(-a,),進而可得點E、B、D坐標,根據(jù)D點在y=(k<0,x<0)圖象上,代入D點坐標求出k值即可.
如圖,連接AC,交OB于E,設A點坐標為(a,),
∵四邊形OABC是平行四邊形,OB、AC是對角線,
∴CE=EA,
∵E點在y軸上,
∴E點橫坐標為0,
∴C點橫坐標為-a,
∵C點在y=(k<0,x<0)圖象上,
∴C點坐標為(-a,),
∴E點坐標為(0,),
∵E為OB中點,
∴B點坐標為(0,)
∵D為BC中點,
∴D點坐標為(,)
∵D點在y=(k<0,x<0)圖象上,
∴k=() =,
解得:k=-6
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】不透明的袋子中裝有4個相同的小球,它們除顏色外無其它差別,把它們分別標號:1、2、3、4,
(1)隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標號相同”的概率
(2)隨機摸出兩個小球,直接寫出“兩次取出的球標號和等于4”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCO的頂點B、C在第二象限,點A(﹣3,0),反比例函數(shù)y=(k<0)圖象經(jīng)過點C和AB邊的中點D,若∠B=α,則k的值為( )
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,∠C和∠D的平分線交于M,DM的延長線交AD于E,試猜想:
(1)CM與DE的位置關系?
(2)M在DE的什么位置上?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定“中小學生每天在校體育活動時間不低于1小時”.為此,某市就“你每天在校體育活動時間是多少”的問題隨機調(diào)查了轄區(qū)內(nèi)300名初中學生.根據(jù)調(diào)查結果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:
A組:;B組:
C組:D組:
請根據(jù)上述信息解答下列問題:
(1)C組的人數(shù)是;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi);
(3)若該轄區(qū)約有24 000名初中學生,請你估計其中達國家規(guī)定體育活動時間的人約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司銷售部有營業(yè)員16人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這16人某月的銷售量如下:
每人銷售件數(shù) | 10 | 11 | 12 | 13 | 14 | 15 |
人數(shù) | 1 | 3 | 4 | 3 | 3 | 2 |
(1)這16位銷售員該月銷售量的眾數(shù)是_____,中位數(shù)是_____,平均數(shù)是_____.
(2)若要使75%的營業(yè)員都能完成任務,應選什么統(tǒng)計量(平均數(shù)、中位數(shù)和眾數(shù))作為月銷售件數(shù)的定額?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點P1,交x軸正半軸于點O2,由弦P1O2和圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4,由弦P3O4和圍成的弓形面積記為S3;…按此做法進行下去,其中S2018的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,等邊△ABC內(nèi)接于⊙O,點P是⌒AB上的任意一點,連結PA,PB,PC.點D是PC上一點,連結DB.
(1) 若PD=PB,求∠PBD的度數(shù);
(2)在(1)的條件下,小麗探究的值,她認為只要弄清PA+PB與PC的關系即可,她的思路可以用以下框圖表示:
根據(jù)小麗的思路,請你完整地書寫本題的探究過程,并求出的值.
(3)如圖2,把條件“等邊△ABC”改為“正方形ABCD”,其余條件不變,判斷是定值嗎?若是,請求出這個值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知正方形的邊長為a,將此正方形按照下面的方法進行剪拼:第一次,先沿正方形的對邊中點連線剪開,然后對接為一個長方形,則此長方形的周長為___;第二次,再沿長方形的對邊(長方形的寬)中點連線剪開,對接為新的長方形,如此繼續(xù)下去,第n次得到的長方形的周長為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com