【題目】如圖,在△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),以AD為腰作等腰△ADE,AD=AE,∠BAC=∠DAE,連接CE.

(1)求證:BD=CE;
(2)已知BC=8,∠BAC=∠DAE=30°,若△DCE的面積為1,求線(xiàn)段BD的長(zhǎng).

【答案】
(1)

證明:∵∠BAC=∠DAE,

∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,

∴∠BAD=∠EAC,

在△ABD和△ACE中,

,

∴△ABD≌△ACE(SAS),

∴BD=CE;


(2)

解: 過(guò)D作DF⊥EC交EC的延長(zhǎng)線(xiàn)于F,

∵△ABD≌△ACE,

∴∠ACE=∠B,

∵∠BAC=30°,

∴∠B+∠ACB=150°,

∴∠BCE=∠ACB+∠ACE=150°,

∴∠DCF=30°,

∴DF= CD= (BC﹣BD)= (8﹣BD),

∵CE=BD,

∴DF=4﹣ CE,

∵△DCE的面積為1,

DFCE= CFBD= (8﹣BD)BD=1,

解得:BD=4﹣ ,BD=4+ (不合題意,舍去).


【解析】(1)易證∠BAD=∠EAC,即可證明△ABD≌△ACE,即可得到結(jié)論;(2)過(guò)D作DF⊥EC交EC的延長(zhǎng)線(xiàn)于F,由△ABD≌△ACE,得到∠ACE=∠B,根據(jù)∠BAC=30°,于是得到∠B+∠ACB=150°,等量代換得到∠BCE=∠ACB+∠ACE=150°,由鄰補(bǔ)角的性質(zhì)得到∠DCF=30°,根據(jù)直角三角形的性質(zhì)得到DF= CD= (BC﹣BD)= (8﹣BD),根據(jù)△DCE的面積為1,列方程即可得到結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解全等三角形的性質(zhì)的相關(guān)知識(shí),掌握全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說(shuō)法不正確的是( )

A.a>0
B.c>0
C.
D.b2+4ac>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:我們把平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線(xiàn)l(l不經(jīng)過(guò)點(diǎn)F)距離相等的點(diǎn)的軌跡(滿(mǎn)足條件的所有點(diǎn)所組成的圖形)叫做拋物線(xiàn).點(diǎn)F叫做拋物線(xiàn)的焦點(diǎn),直線(xiàn)l叫做拋物線(xiàn)的準(zhǔn)線(xiàn).
(1)已知拋物線(xiàn)的焦點(diǎn)F(0, ),準(zhǔn)線(xiàn)l: ,求拋物線(xiàn)的解析式;
(2)已知拋物線(xiàn)的解析式為:y=x2﹣n2 , 點(diǎn)A(0, )(n≠0),B(1,2﹣n2),P為拋物線(xiàn)上一點(diǎn),求PA+PB的最小值及此時(shí)P點(diǎn)坐標(biāo);
(3)若(2)中拋物線(xiàn)的頂點(diǎn)為C,拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)分別是D、E,過(guò)C、D、E三點(diǎn)作⊙M,⊙M上是否存在定點(diǎn)N?若存在,求出N點(diǎn)坐標(biāo)并指出這樣的定點(diǎn)N有幾個(gè);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在RtABC中,∠C=90°,∠A=30°,BC=18cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC向點(diǎn)C運(yùn)動(dòng),如果動(dòng)點(diǎn)P2cm/s,Q1cm/s的速度同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts),解答下列問(wèn)題:

1t為何值時(shí),△PBQ是等邊三角形?

2P,Q在運(yùn)動(dòng)過(guò)程中,△PBQ的形狀不斷發(fā)生變化,當(dāng)t為何值時(shí),△PBQ是直角三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠ACB=90°,AC=BC,BDDE,AEDE,垂足分別為D、E.(這幾何模型具備“一線(xiàn)三直角”)如下圖:

(1)①請(qǐng)你證明:△ACE△CBD;②若AE=3,BD=5,DE的長(zhǎng);

(2)遷移:如圖:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分別是邊BC,AC上的點(diǎn),將DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,點(diǎn)E剛好落在邊AB上的點(diǎn)F處,則CE=________。(不要求寫(xiě)過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算與解不等式式
(1)計(jì)算(π﹣ 0+( 1
(2)解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷(xiāo)市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷(xiāo)售,最后剩下50件按八折優(yōu)惠賣(mài)出,如果兩批襯衫全部售完后利潤(rùn)不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E∠AOB的平分線(xiàn)上的一點(diǎn),EC⊥OAED⊥OB,垂足分別是C,D.求證:OE垂直平分CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司開(kāi)發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6/件,該產(chǎn)品在正式投放市場(chǎng)前通過(guò)代銷(xiāo)點(diǎn)進(jìn)行了為期一個(gè)月(30)的試銷(xiāo)售,售價(jià)為10/件,工作人員對(duì)銷(xiāo)售情況進(jìn)行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線(xiàn)ABC表示日銷(xiāo)售量y()與銷(xiāo)售時(shí)間x()之間的函數(shù)關(guān)系.

(1)yx之間的函數(shù)表達(dá)式,并寫(xiě)出x的取值范圍;

(2)若該節(jié)能產(chǎn)品的日銷(xiāo)售利潤(rùn)為W(),求Wx之間的函數(shù)表達(dá)式,并求出日銷(xiāo)售利潤(rùn)不超過(guò)1040元的天數(shù)共有多少天?

(3)5≤x≤17,直接寫(xiě)出第幾天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案