【題目】小明,小亮都想去觀看電影,但是只有一張電影票,他們決定采取抽卡片的辦法確定誰去,規(guī)定如下:將正面分別標(biāo)有數(shù)字,的三張卡片(除數(shù)字外其余都同)洗勻后背面朝上放置在桌面上,隨機抽出一張記下數(shù)字后放回,重新洗勻后背面朝上放置在桌面上,再隨機抽出一張記下數(shù)字,如果兩個數(shù)字的積為奇數(shù),則小明去;如果兩個數(shù)字的積為偶數(shù),則小亮去.

1)請用列表或樹狀圖的方法表示抽出的兩張卡片上的數(shù)字積的所有可能出現(xiàn)的結(jié)果;

2)你認(rèn)為這個規(guī)則公平嗎?請說明理由.

【答案】1)見詳解;(2)游戲不公平,理由見詳解;

【解析】

1根據(jù)題意直接列表或畫樹狀圖即可;
2)先分別求出兩紙牌上的數(shù)字之積的所有情況,再求出其中偶數(shù)和奇數(shù)的個數(shù),即可求出小明獲勝的概率和小亮獲勝的概率,最后得出游戲是否公平.

1)畫樹狀圖如圖:

2)由(1)知一共有種等可能情形,其中出現(xiàn)積為奇數(shù)的情況有種,出現(xiàn)積為偶數(shù)的情況有種,則(數(shù)字之積為奇數(shù)),(數(shù)字之積為偶數(shù))

(數(shù)字之積為奇數(shù))(數(shù)字之積為偶數(shù)),

所以游戲不公平.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形以點為圓心,以任意長為半徑作弧分別交、兩點,再分別以點為圓心,以大于的長為半徑作弧交于點,作射線于點,若,則矩形的面積等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的相似對角線

(1)如圖1,已知四邊形在正方形網(wǎng)格中,頂點都在格點上,判斷:四邊形______(不是”)相似對角線的四邊形;

(2)如圖,在四邊形中,,對角線平分.求證:是四邊形相似對角線

(3)如圖,已知是四邊形相似對角線.連接,若的面積為,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點、右),與軸交于點,連接、,若,則下列結(jié)論正確的是(

A.B.坐標(biāo)C.D.對稱軸

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正比例函數(shù)的圖象經(jīng)過點,則下列點也在該函數(shù)圖象上的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,AB=ACBAC=50°BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則CEF的度數(shù)是( 。

A. 60° B. 55° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC60°,DBC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則:

1ACE的度數(shù)是   ; 線段ACCD,CE之間的數(shù)量關(guān)系是   

2)如圖,在△ABC中,ABAC,∠BAC90°,DBC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請判斷線段AC,CDCE之間的數(shù)量關(guān)系,并說明理由;

3)如圖,ACDE交于點F,在(2)條件下,若AC8,求AF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知二次函數(shù),為常數(shù))的對稱軸為,與軸的交點為,的最大值為5,頂點為,過點且平行于軸的直線與拋物線交于點.

1)求該二次函數(shù)的解析式和點,的坐標(biāo).

2)點是直線上的動點,若點,點,點所構(gòu)成的三角形與相似,求出所有點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過的三個頂點,與軸相交于,點坐標(biāo)為,點是點關(guān)于軸的對稱點,點軸的正半軸上.

1)求該拋物線的函數(shù)解析式;

2)點為線段上一動點,過點軸,軸, 垂足分別為點,,當(dāng)四邊形為正方形時,求出點的坐標(biāo);

3)將(2 中的正方形沿向右平移,記平移中的正方形為正方形,當(dāng)點和點重合時停止運動, 設(shè)平移的距離為,正方形的邊交于點,所在的直線與交于點, 連接,是否存在這樣的,使是等腰三角形?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案