【題目】小冬和小松正在玩擲骰子,走方格的游戲.游戲規(guī)則如下:(1)擲一枚質(zhì)地均勻的正方體骰子(骰子六個(gè)面的數(shù)字分別是16),落地后骰子向上一面的數(shù)字是幾,就先向前走幾格,然后暫停.(2)再看暫停的格子上相應(yīng)的文字要求,按要求去做后,若還有新的文字要求,則繼續(xù)按新要求去做,直至無(wú)新要求為止,此次走方格結(jié)束.下圖是該游戲的部分方格:

大本營(yíng)

1

對(duì)自己說(shuō)

加油!

2

后退一格

3

前進(jìn)三格

4

原地不動(dòng)

5

對(duì)你的小伙伴說(shuō)你好!

6

背一首古詩(shī)

例如:小冬現(xiàn)在的位置在大本營(yíng),擲骰子,骰子向上一面的數(shù)字是2,則小冬先向前走兩格到達(dá)方格2,然后執(zhí)行方格2的文字要求后退一格,則退回到方格1,再執(zhí)行方格1的文字要求:對(duì)自己說(shuō)加油!.小冬此次擲骰子,走方格結(jié)束,最終停在了方格1.如果小松現(xiàn)在的位置也在大本營(yíng),那么他擲一次骰子最終停在方格6的概率是(

A.B.C.D.

【答案】B

【解析】

根據(jù)擲一次骰子最終停在方格6的出現(xiàn)的情況利用概率公式解答即可.

擲一次骰子最終停在方格6的情況有①直接擲6;②擲3后前進(jìn)三格到6;

所以擲一次骰子最終停在方格6的概率是,

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】是有理數(shù),則的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的周長(zhǎng)是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( 。

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)概率時(shí),做投擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn),他們共做了60次實(shí)驗(yàn),實(shí)驗(yàn)的結(jié)果如下:

(1)計(jì)算“3點(diǎn)朝上的頻率和“5點(diǎn)朝上的頻率.

(2)小穎說(shuō):根據(jù)實(shí)驗(yàn),一次實(shí)驗(yàn)中出現(xiàn)5點(diǎn)朝上的概率最大;小紅說(shuō):如果投擲600次,那么出現(xiàn)6點(diǎn)朝上的次數(shù)正好是100次.小穎和小紅的說(shuō)法正確嗎?為什么?

(3)小穎和小紅各投擲一枚骰子,用列表或畫(huà)樹(shù)狀圖的方法求出兩枚骰子朝上的點(diǎn)數(shù)之和為3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10)如圖,將兩塊全等的三角板拼在一起,其中△ABC的邊BC在直線l上,AC⊥BCAC = BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,EF⊥FPEF = FP。

1)在圖中,請(qǐng)你通過(guò)觀察、測(cè)量,猜想并寫(xiě)出ABAP所滿足的數(shù)量關(guān)系和位置關(guān)系;

2)將三角板△EFP沿直線l向左平移到圖的位置時(shí),EPAC于點(diǎn)Q,連接APBQ。猜想并寫(xiě)出BQAP所滿足的數(shù)量關(guān)系和位置關(guān)系,并證明你的猜想;

3)將三角板△EFP沿直線l向左平移到圖的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連接APBQ。你認(rèn)為(2)中猜想的BQAP所滿足的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB=4,AD=2.點(diǎn)Q與點(diǎn)P同時(shí)從點(diǎn)A出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿ADCB的方向運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿ABCD的方向運(yùn)動(dòng),當(dāng)PQ兩點(diǎn)相遇時(shí),它們同時(shí)停止運(yùn)動(dòng).設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒),在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)△APQ為直角三角形時(shí),則相應(yīng)的的值或取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,校園內(nèi)有兩幢高度相同的教學(xué)樓AB,CD,大樓的底部B,D在同一平面上,兩幢樓之間的距離BD長(zhǎng)為24米,小明在點(diǎn)E(B,E,D在一條直線上)處測(cè)得教學(xué)樓AB頂部的仰角為45°,然后沿EB方向前進(jìn)8米到達(dá)點(diǎn)G處,測(cè)得教學(xué)樓CD頂部的仰角為30°.已知小明的兩個(gè)觀測(cè)點(diǎn)F,H距離地面的高度均為1.6米,求教學(xué)樓AB的高度AB長(zhǎng).(精確到0.1米)參考值:≈1.41,≈1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AE平分BADBCE,CAE=15°,則下列結(jié)論:ODC是等邊三角形;②BC=2AB;AOE=135°; ④SAOE=SCOE其中正確的結(jié)論的個(gè)數(shù)有

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CD、CE分別是ABC的高和角平分線.

1)若A=30°,B=50°,求ECD的度數(shù);

2)試用含有A、B的代數(shù)式表示ECD(不必證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案