【題目】如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都是1,在所給網(wǎng)格中按下列要求畫出圖形:
(1)(I)已知點A在格點(即小正方形的頂點)上,畫一條線段AB,長度為 ,且點B在格點上; (II)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,2 ,畫一個三角形ABC,使點C在格點上(只需畫出符合條件的一個三角形);
(2)所畫的三角形ABC的AB邊上高線長為(直接寫出答案)

【答案】
(1)解:(I)如圖所示:

(II)如圖所示:


(2)
【解析】解:(2)三角形ABC的AB邊上高線長為: ×3×2×2÷ =3×2÷
=
所以答案是:
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】求代數(shù)式 的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校開展捐書活動,以下是5名同學捐書的冊數(shù):4,9,5,x,3,已知這組數(shù)據(jù)的平均數(shù)是5,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是(

A. 33 B. 44 C. 34 D. 55

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫下列解題過程中的推理根據(jù):
已知:如圖,點F、E分別在AB、CD上,AE、DF分別與BC相交于H、G,∠A=∠D,∠1+∠2=180°.說明:AB∥CD

解:∵∠1=∠CGD(
∠1+∠2=180°
.
∴AE//FD (
(兩直線平行,同位角相等)
又∠A=∠D
∴∠D=∠BFD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程2x25x40根的情況是( 。

A. 有兩個不相等的實數(shù)根

B. 有兩個相等的實數(shù)根

C. 沒有實數(shù)根

D. 無法判定該方程根的情況

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系xOy中,反比例函數(shù)的圖象與一次函數(shù)y2=kx+b的圖象交于點A(-4,-1)和點B1,n.

1)求這兩個函數(shù)的表達式;

2)觀察圖象,當y1y2時,直接寫出自變量x的取值范圍;

3)如果點C與點A關于y軸對稱,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下面的結論: ①△ODC是等邊三角形;②BC=2AB;③∠AOE=135°;④SAOE=SCOE ,
其中正確結論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):

(1)探究一:三角形的一個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,
試探究∠P與∠A的數(shù)量關系,并說明理由.
(2)探究二:四邊形的兩個個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖2,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,
試探究∠P與∠A+∠B的數(shù)量關系,并說明理由.
(3)探究三:六邊形的四個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖3,在六邊形ABCDEF中,DP、CP分別平分∠EDC和∠BCD,
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關系:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)2016年屋頂綠化面積為2000平方米,計劃2018年屋頂綠化面積要達到2880平方米,如果每年屋頂綠化面積的增長率相同,那么這個增長率是

查看答案和解析>>

同步練習冊答案