【題目】如圖,AB為⊙O的直徑,點C在⊙O上,過點C作⊙O的切線交AB的延長線于點D,已知∠D=30°.
(1)求∠A的度數(shù);
(2)若點F在⊙O上,CF⊥AB,垂足為E,CF=,求圖中陰影部分的面積.
【答案】(1) 30°;(2)-2.
【解析】試題分析:(1)連接OC,則△OCD是直角三角形,可求出∠COD的度數(shù);由于∠A與∠COD是同弧所對的圓周角與圓心角.根據(jù)圓周角定理即可求得∠A的度數(shù);
(2)由圖可知:陰影部分的面積是扇形OCB和Rt△OEC的面積差;那么解決問題的關鍵是求出半徑和OE的長;在Rt△OCE中,∠OCE=∠D=30°,已知了CE的長,通過解直角三角形,即可求出OC、OE的長,由此得解.
試題解析:(1)連接OC,
∵CD切⊙O于點C
∴∠OCD=90°
∵∠D=30°
∴∠COD=60°
∵OA=OC
∴∠A=∠ACO=30°;
(2)∵CF⊥直徑AB,CF=4
∴CE=2
∴在Rt△OCE中,tan∠COE=,
OE==2,
∴OC=2OE=4
∴S扇形BOC=,S△EOC=×2×2=2
∴S陰影=S扇形BOC-S△EOC=-2.
科目:初中數(shù)學 來源: 題型:
【題目】下列調查中適合采用抽樣調查的是( )
A.調查本班同學的身高情況B.飛機起飛前,對相關零部件進行檢查
C.調查春節(jié)聯(lián)歡晚會的收視率D.選出某班短跑跑得最快的學生參加學校比賽
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y=上,點B在雙曲線y=(k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C( ,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.
其中正確結論的序號是_______________.(在橫線上填上你認為所有正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九年級某班數(shù)學興趣小組經(jīng)過市場調查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關信息如下.已知商品的進價為30元/件,設該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).
時間x(天) | 1 | 30 | 60 | 90 |
每天銷售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w與x的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某病毒細胞的直徑約為0.000156cm,用科學記數(shù)法表示這個數(shù)是( )
A.0.156×10﹣3B.15.6×10﹣5C.1.56×10﹣4D.1.56×104
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A.連接直線外一點與直線上各點的所有線段中,垂線段最短
B.互補的角是鄰補角
C.兩條直線被第三條直線所截,同旁內角互補
D.過一點有且只有一條直線與已知直線平行
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com