【題目】如圖,在矩形中,,,點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)即停止;同時(shí)點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)即停止.點(diǎn)、的速度的速度都是,連結(jié),,,設(shè)點(diǎn)、運(yùn)動(dòng)的時(shí)間為.
當(dāng)為何值時(shí),四邊形是矩形?
當(dāng)為何值時(shí),四邊形是菱形?
分別求出中菱形的周長(zhǎng)和面積.
【答案】(1)當(dāng)時(shí),四邊形是矩形;(2)當(dāng)時(shí),四邊形是菱形;周長(zhǎng)為:,面積為:.
【解析】
(1)當(dāng)四邊形ABQP是矩形時(shí),BQ=AP,據(jù)此求得t的值;
(2)當(dāng)四邊形AQCP是菱形時(shí),AQ=AC,列方程求得運(yùn)動(dòng)的時(shí)間t;
(3)菱形的四條邊相等,則菱形的周長(zhǎng)=4t,面積=矩形的面積-2個(gè)直角三角形的面積.
解:(1)當(dāng)時(shí),四邊形是矩形;
設(shè)秒后,四邊形是菱形
當(dāng),即時(shí),四邊形為菱形.
解得:.
答:當(dāng)時(shí),四邊形是菱形;
當(dāng)時(shí),,則周長(zhǎng)為:,
面積為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C/處,BC/交AD于E,AD=8,AB=4,DE的長(zhǎng)=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】百子回歸圖是由 1,2,3,…,100 無重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡(jiǎn)史,如:中央四 位“19 99 12 20”標(biāo)示澳門回歸日期,最后一行中間兩 位“23 50”標(biāo)示澳門面積,…,同時(shí)它也是十階幻方, 其每行 10 個(gè)數(shù)之和、每列 10 個(gè)數(shù)之和、每條對(duì)角線10 個(gè)數(shù)之和均相等,則這個(gè)和為______.
百 子 回 歸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,則∠A的度數(shù)是( 。
A.60°B.76°C.77°D.78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)請(qǐng)畫出△ABC關(guān)于直線m(直線m上各點(diǎn)的橫坐標(biāo)都為1)對(duì)稱的圖形.(其中A′、B′、C′分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法)
(2)直接寫出A′、B′、C′三點(diǎn)的坐標(biāo).
(3)平面內(nèi)任一點(diǎn)P(x,y)關(guān)于直線m對(duì)稱點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距20千米,甲、乙兩人都從A地去B地,圖中l1和l2分別表示甲、乙兩人所走路程s(千米)與時(shí)間t(小時(shí))之間的關(guān)系,下列說法:①乙晚出發(fā)1小時(shí);②乙出發(fā)3小時(shí)后追上甲;③甲的速度是4千米/時(shí);④乙先到達(dá)B地.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;
②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是雙曲線在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第四象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在第四象限,且雙曲線始終經(jīng)過點(diǎn)C,則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com