【題目】如圖,△ABC內(nèi)接于⊙O,弦AD⊥AB交BC于點(diǎn)E,過點(diǎn)B作⊙O的切線交DA的延長(zhǎng)線于點(diǎn)F,且∠ABF=∠ABC.
(1)求證:AB=AC;
(2)若AD=4,cos∠ABF= ,求DE的長(zhǎng).

【答案】
(1)證明:∵BF是⊙O的切線,

∴∠1=∠C,

∵∠ABF=∠ABC,

即∠1=∠2,

∴∠2=∠C,

∴AB=AC;


(2)解:如圖,連接BD,在Rt△ADB中,∠BAD=90°,

∵cos∠ADB= ,∴BD= = = =5,

∴AB=3.

在Rt△ABE中,∠BAE=90°,

∵cos∠ABE= ,∴BE= = = ,

∴AE= = ,

∴DE=AD﹣AE=4﹣ =


【解析】(1)由BF是⊙O的切線,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可證得∠2=∠C,即可得AB=AC;(2)首先連接BD,在Rt△ABD中,解直角三角形求出AB的長(zhǎng)度;然后在Rt△ABE中,解直角三角形求出AE的長(zhǎng)度;最后利用DE=AD﹣AE求得結(jié)果.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圓周角定理(頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半),還要掌握切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點(diǎn)O,OC=1,以點(diǎn)O為圓心OC為半徑作半圓.

(1)求證:AB為⊙O的切線;
(2)如果tan∠CAO= ,求cosB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算: ;
(2)化簡(jiǎn):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,垂足為E,連接DF,則∠CDF等于(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表反映的是某地區(qū)電的使用量x(千瓦時(shí))與應(yīng)交電費(fèi)y(元)之間的關(guān)系,下列說法不正確的是( 。

用電量x(千瓦時(shí))

1

2

3

4

 應(yīng)交電費(fèi)y(元)

 0.55

 1.1

 1.65

 2.2

 …

A. x與y都是變量,且x是自變量,y是x的函數(shù)

B. 用電量每增加1千瓦時(shí),電費(fèi)增加0.55元

C. 當(dāng)交電費(fèi)20.5元時(shí),用電量為37千瓦時(shí)

D. 若用電量為8千瓦時(shí),則應(yīng)交電費(fèi)4.4元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(1,2),B(0,4).

(1)求此函數(shù)的解析式.

(2)求原點(diǎn)到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店王阿姨到水果批發(fā)市場(chǎng)打算購(gòu)進(jìn)一種水果銷售,經(jīng)過還價(jià),實(shí)際價(jià)格每千克比原來少2元,發(fā)現(xiàn)原來買這種水果80千克的錢,現(xiàn)在可買88千克.
(1)現(xiàn)在實(shí)際購(gòu)進(jìn)這種水果每千克多少元?
(2)王阿姨準(zhǔn)備購(gòu)進(jìn)這種水果銷售,若這種水果的銷售量y(千克)與銷售單價(jià)x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系. ①求y與x之間的函數(shù)關(guān)系式;
②請(qǐng)你幫王阿姨拿個(gè)主意,將這種水果的銷售單價(jià)定為多少時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=銷售收入﹣進(jìn)貨金額)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,∠ACB=90°,且AC=1.過點(diǎn)C作直線l∥AB,P為直線l上一點(diǎn),且AP=AB.則點(diǎn)P到BC所在直線的距離是(
A.1
B.1或
C.1或
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)鋼筋三角形框架三邊長(zhǎng)分別為20厘米,50厘米、60厘米,現(xiàn)要再做一個(gè)與其相似的鋼筋三角形框架,而只有長(zhǎng)是30厘米和50厘米的兩根鋼筋,要求以其中一根為邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有(  ).
A.一種
B.二種
C.三種
D.四種

查看答案和解析>>

同步練習(xí)冊(cè)答案