【題目】如圖一艘漁船位于港口A的北偏東60°方向,距離港口20海里的B,它沿北偏西37°方向航行至C處突然出現(xiàn)故障,C處等待救援,B,C之間的距離為10海里,救援船從港口A出發(fā)經(jīng)過20分鐘到達C,求救援船的航行速度.(sin37°0.6,cos37°0.8,1.732,結(jié)果取整數(shù))

【答案】救援船的航行速度大約是64海里/時.

【解析】試題解析輔助線如圖所示:BDAD,BECECFAF,在RtABD中,根據(jù)勾股定理可求AD,在RtBCE中,根據(jù)三角函數(shù)可求CEEB,在RtAFC中,根據(jù)勾股定理可求AC,再根據(jù)路程÷時間=速度求解即可.

試題解析:解:輔助線如圖所示:

BDAD,BECE,CFAF,有題意知,FAB=60°,∠CBE=37°,∴∠BAD=30°,∵AB=20海里,BD=10海里,在RtABD中,AD==≈17.32海里,在RtBCE中,sin37°=,∴CE=BCsin37°≈0.6×10=6海里,∵cos37°=,∴EB=BCcos37°≈0.8×10=8海里,EF=AD=17.32海里,FC=EFCE=11.32海里,AF=ED=EB+BD=18海里,在RtAFC中,AC= =≈21.26海里,21.26×3≈64海里/小時.

答:救援的艇的航行速度大約是64海里/小時.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABDBDC都是直角三角形,且∠ABD=BDC=90°,∠BAD=30°,∠DBC=45°,則tanDAC的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富學生的校園生活,準備從體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元。

(1)求購買一個足球、一個籃球各需多少元?

(2)根據(jù)學校實際情況,需從體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某民航飛機在大連海域失事,為調(diào)查失事原因,決定派海軍潛水員打撈飛機上的黑匣子,如圖所示,一潛水員在A處以每小時8海里的速度向正東方向劃行,在A處測得黑匣子B在北偏東60°的方向,劃行半小時后到達C處,測得黑匣子B在北偏東30°的方向,在潛水員繼續(xù)向東劃行多少小時,距離黑匣子B最近,并求最近距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,△AEC中,∠E90°,將△AEC繞點A順時針旋轉(zhuǎn)60°得到△ADB,ACAB對應,AEAD對應

請證明△ABC為等邊三角形;

如圖2BD所在的直線為b,分別過點A、C作直線b的平行線a、c,直線a、b之間的距離為2,直線a、c之間的距離為7,則等邊△ABC的邊長為   

2)如圖3,∠POQ60°,△ABC為等邊三角形,點A為∠POQ內(nèi)部一點,點B、C分別在射線OQ、OP上,AEOPE,OE5,AE2,求△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,C離海岸線l的距離(CD的長)2,從A測得船C在北偏東45°的方向,從B測得船C在北偏東22.5°的方向,則AB的長(  )

A. 2 km B. (2)km C. (42) km D. (4) km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列四個關于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長和底邊上的高成反比例;

(2)面積一定的菱形的兩條對角線長成反比例;

(3)面積一定的矩形的兩條對角線長成反比例;

(4)面積一定的直角三角形的兩直角邊長成比例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自動化車間計劃生產(chǎn)480個零件,當生產(chǎn)任務完成一半時,停止生產(chǎn)進行自動化程序軟件升級,用時20分鐘,恢復生產(chǎn)后工作效率比原來提高了,結(jié)果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD,PAB的中點,QBC上一動點,BPQ沿PQ折疊,B落在點E,延長QEADM,連接PM.

(1)求證:PAMPEM;

(2)DQPQ,CQD沿DQ折疊,C落在線段EQ上點F.

求證:PAMDCQ;

如果AM=1,sinDMF=,AB的長.

查看答案和解析>>

同步練習冊答案