【題目】如圖,邊長為的正方形的對角線與交于點,將正方形沿直線折疊,點落在對角線上的點處,折痕交于點,則( )
A. B. C. D.
【答案】D
【解析】
過點M作MP⊥CD垂足為P,過點O作OQ⊥CD垂足為Q,根據(jù)正方形的性質(zhì)得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根據(jù)折疊的性質(zhì)得到∠EDF=∠CDF,設(shè)OM=PM=x,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
過點M作MP⊥CD垂足為P,過點O作OQ⊥CD垂足為Q,
∵ 正方形的邊長為 ,
∴OD=1, OC=1, OQ=DQ= ,由折疊可知,∠EDF=∠CDF.
又∵AC⊥BD, ∴OM=PM,
設(shè)OM=PM=x
∵OQ⊥CD,MP⊥CD
∴∠OQC=∠MPC=900, ∠PCM=∠QCO,
∴△CMP∽△COQ
∴, 即 , 解得x=-1
∴OM=PM=-1.
故選D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A的坐標(biāo)為(l,1),點B在x軸正半軸上,點D在第三象限的雙曲線y=上,過點C作CE//x軸交雙曲線于點E,連接BE,則△BCE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在矩形ABCD中,連接對角線AC,將△ABC繞點B順時針旋轉(zhuǎn)90°得到△EFG,并將它沿直線AB向左平移,直線EG與BC交于點H,連接AH,CG.
(1)如圖①,當(dāng)AB=BC,點F平移到線段BA上時,線段AH,CG有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你的猜想;
(2)如圖②,當(dāng)AB=BC,點F平移到線段BA的延長線上時,(1)中的結(jié)論是否成立,請說明理由;
(3)如圖③,當(dāng)AB=nBC(n≠1)時,對矩形ABCD進(jìn)行如已知同樣的變換操作,線段AH,CG有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90,sinC=,AC=8,BD平分∠ABC交邊AC于點D.
求(1)邊AB的長;
(2)tan∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,AC=4,BC=3,O是AB上一點,且AO:OB=2:5,過點O作垂足為D,
(1)求點O到直線AC的距離OD的長;(圖1)
(2)若P是邊AC上的一個動點,作交線段BC于Q(不與B、C重合)(圖2)
①求證:;
②設(shè),,試求關(guān)于的函數(shù)解析式,并寫出定義域;
③若與相似,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點P是AB的中點,連接DP,過點B作BE⊥DP交DP的延長線于點E,連接AE,過A點作AF⊥AE交DP于點F,連接BF,若AE=2,正方形ABCD的面積為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度運(yùn)動,設(shè)直線l與菱形OABC的兩邊分別交于點M、N(點M在點N的上方).
(1)求A、B兩點的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動時間為t秒(0≤t≤6),試求S與t的函數(shù)表達(dá)式;
(3)在題(2)的條件下,是否存在某一時刻,使得△OMN的面積與OABC的面積之比為3:4?如果存在,請求出t的取值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過上一點E作EG∥AC交CD的延長線于點G,連接AE交CD于點F,且EG=FG,連接CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜的單價 與銷售月份x之間的關(guān)系如圖1所示,成本 與銷售月份x之間的關(guān)系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的利潤是 元.(利潤=售價-成本);
(2)設(shè)每千克該蔬菜銷售利潤為P,請列出x與P之間的函數(shù)關(guān)系式,并求出哪個月出售這種蔬菜每千克的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com