【題目】如圖的矩形ABCD中,E點(diǎn)在CD上,且AE<AC.若P、Q兩點(diǎn)分別在AD、AE上,AP:PD=4:1,AQ:QE=4:1,直線PQ交AC于R點(diǎn),且Q、R兩點(diǎn)到CD的距離分別為q、r,則下列關(guān)系何者正確?( 。
A.q<r,QE=RC
B.q<r,QE<RC
C.q=r,QE=RC
D.q=r,QE<RC

【答案】D
【解析】解:∵在矩形ABCD中,AB∥CD,
∵AP:PD=4:1,AQ:QE=4:1,
,
∴PQ∥CD,
=4,
∵平行線間的距離相等,
∴q=r,
=4,∴ = ,
∵AE<AC,
∴QE<CR.
故選D.

根據(jù)矩形的性質(zhì)得到AB∥CD,根據(jù)已知條件得到 ,根據(jù)平行線分線段成比例定理得到PQ∥CD, =4,根據(jù)平行線間的距離相等,得到q=r,證得 = ,于是得到結(jié)論.本題考查了平行線分線段成比例定理,矩形的性質(zhì),熟練掌握平行線分線段成比例定理是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只螞蟻在正方形ABCD區(qū)域內(nèi)爬行,點(diǎn)O是對(duì)角線的交點(diǎn),∠MON=90°,OM,ON分別交線段AB,BC于M,N兩點(diǎn),則螞蟻停留在陰影區(qū)域的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長(zhǎng)為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某工件的三視圖,則此工件的表面積為(  )
A.15πcm2
B.51πcm2
C.66πcm2
D.24πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)(2y﹣z):(z+2x):y=1:5:2,則(3y﹣z):(2z﹣x):(x+3y)=( 。
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)以M點(diǎn)為位似中心,在網(wǎng)格中畫(huà)出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2:1;
(3)若每一個(gè)方格的面積為1,則△A2B2C2的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:Rt△ACB,BC=3,AC=4,延長(zhǎng)BC至D,使得△ABD為等腰三角形,求CD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)一大型超市銷售的甲、乙、丙3種大米進(jìn)行質(zhì)量檢測(cè).共抽查大米200袋,質(zhì)量評(píng)定分為A、B兩個(gè)等級(jí)(A級(jí)優(yōu)于B級(jí)),相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖如下:
根據(jù)所給信息,解決下列問(wèn)題:
(1)a= , b=;
(2)已知該超市現(xiàn)有乙種大米750袋,根據(jù)檢測(cè)結(jié)果,請(qǐng)你估計(jì)該超市乙種大米中有多少袋B級(jí)大米?
(3)對(duì)于該超市的甲種和丙種大米,你會(huì)選擇購(gòu)買哪一種?運(yùn)用統(tǒng)計(jì)知識(shí)簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀材料)

,即2<3,

∴1<<2.

﹣1的整數(shù)部分為1.

﹣1的小數(shù)部分為﹣2

(解決問(wèn)題)9的小數(shù)部分是   

我們還可以用以下方法求一個(gè)無(wú)理數(shù)的近似值.

閱讀理解:求的近似值.

解:設(shè)=10+x,其中0<x<1,則107=(10+x)2,即107=100+20x+x2

因?yàn)?<x<1,所以0<x21,所以107≈100+20x,解之得x0.35,即的近似值為10.35.

理解應(yīng)用:利用上面的方法求的近似值(結(jié)果精確到0.01).

查看答案和解析>>

同步練習(xí)冊(cè)答案