【題目】如圖 的平分線和外角的平分線相交于點,。

1)求的度數(shù);(寫理由)

2)如圖(2),在⑴的條件下,再畫的角平分線相交于點,求的度數(shù);

3)若,按上述規(guī)律繼續(xù)畫下去,請直接寫出的度數(shù)。

【答案】(1)20°;(2)10°;(3).

【解析】

(1)由∠O1CD=O1+O1BC,∠ACD=ABC+A,而O1B、O1C分別平分∠ABC和∠ACD,得到∠ACD=2O1CD,∠ABC=2O1BC,于是有∠A=2O1,由此即可得答案;

(2)(1)相同的道理,可得∠O1=2O2,由此即可得答案;

(3)根據(jù)(1)、(2)即可找出規(guī)律,由此即可得答案.

(1)O1B、O1C分別平分∠ABC和∠ACD

∴∠ACD=2O1CD,∠ABC=2O1BC

∵∠O1CD=BO1C+O1BC,∠ACD=ABC+A,

∴∠A=2BO1C=40°,

∴∠BO1C=20°;

(2)根據(jù)(1)可得:

BO1C=2BO2C

即∠A=22BO2C=40°,

∴∠BO2C=10°;

(3)根據(jù)(1)、(2)可得:∠A=2nBOnC,

∴∠BOnC =

,

∴∠BO2019C=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=,AD=10.連接BD,∠DBC的角平分線BE交DC于點E,現(xiàn)把△BCE繞點B逆時針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當(dāng)射線BE′和射線BC′都與線段AD相交時,設(shè)交點分別為F,G.若△BFD為等腰三角形,則線段DG長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人因需要經(jīng)常去復(fù)印資料,甲復(fù)印社按A4紙每102元計費,乙復(fù)印社則按A4紙每100.8元計費,但需按月付一定數(shù)額的承包費.兩復(fù)印社每月收費情況如圖所示,根據(jù)圖中提供的信息解答下列問題:

1)乙復(fù)印社要求客戶每月支付的承包費是_______元;

2)當(dāng)每月復(fù)印_______頁時,兩復(fù)印社實際收費相同;

3)如果每月復(fù)印200頁時,應(yīng)選擇_______復(fù)印社?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(k-2)x2-4x+2=0有兩個不相等的實數(shù)根.

(1)k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2-4x+k=0x2+mx-1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器經(jīng)營業(yè)主計劃購進一批同種型號的冷風(fēng)扇和普通電風(fēng)扇,若購進8臺冷風(fēng)扇和20臺普通電風(fēng)扇,需要資金17400元,若購進10臺冷風(fēng)扇和30臺普通電風(fēng)扇,需要資金22500元.求冷風(fēng)扇和普通電風(fēng)扇每臺的采購價各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為滿足同學(xué)們課外活動的需求,要求購排球和足球若干個.已知足球的單價比排球的單價多30元,用500元購得的排球數(shù)量與用800元購得的足球數(shù)量相等.
(1)排球和足球的單價各是多少元?
(2)若恰好用去1200元,有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江南農(nóng)場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務(wù),且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應(yīng)的費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個種植總面積為540m2的矩形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過14(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:


占地面積(m/壟)

產(chǎn)量(千克/壟)

利潤(元/千克)

西紅柿

30

160

1.1

草莓

15

50

1.6

1)若設(shè)草莓共種植了壟,通過計算說明共有幾種種植方案?分別是哪幾種?

2)在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個三角形的紙片ABC,其中∠A=C,

1)把△ABC紙片按 (如圖1) 所示折疊,使點A落在BC邊上的點F處,DE是折痕.說明 BCDF

2)把△ABC紙片沿DE折疊,當(dāng)點A落在四邊形BCED內(nèi)時 (如圖2),探索∠C與∠1+2之間的大小關(guān)系,并說明理由;

3)當(dāng)點A落在四邊形BCED外時 (如圖3),探索∠C與∠1、∠2之間的大小關(guān)系.(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案