【題目】某校為迎接體育中考,了解學(xué)生的體育情況,學(xué)校隨機調(diào)查了本校九年級50名學(xué)生“30秒跳繩”的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
根據(jù)以上圖表信息,解答下列問題:
(1)表中的a= ,m= ;
(2)請把頻數(shù)分布直方圖補充完整;(畫圖后請標注相應(yīng)的數(shù)據(jù))
(3)若該校九年級共有600名學(xué)生,請你估計“30秒跳繩”的次數(shù)60次以上(含60次)的學(xué)生有多少人?
【答案】(1)a=0.2,m=16;(2)補圖見解析;(3)336人
【解析】試題分析:(1)直接利用已知表格中0≤x≤20范圍的頻數(shù)與頻率求出總數(shù),再求出a、b、m、n的值即可;
(2)利用(1)中所求補全條形統(tǒng)計圖即可;
(3)直接利用超過60次的學(xué)生所占頻率乘以總?cè)藬?shù)進而求出答案.
試題解析:(1)由題意可得:5÷0.1=50
a=10÷50=0.2,
b=50×0.14=7
m=50-(5+10+7+12)=16;
(2)補全條形統(tǒng)計圖如下
(3)600×=336(人).
答:“30秒跳繩”的次數(shù)60次以上(含60次)的學(xué)生:336人
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來交通事故發(fā)生率逐年上升,交通問題成為重大民生問題,鄱陽二中數(shù)學(xué)興趣小組為檢測汽車的速度設(shè)計了如下實驗:如圖,在公路MN(近似看作直線)旁選取一點C,測得C到公路的距離為30米,再在MN上選取A、B兩點,測得∠CAN=30°,∠CBN=60°.
(1)求AB的長;(精確到0.1米,參考數(shù)據(jù)=1.41, =1.73)
(2)若本路段汽車限定速度為40千米/小時,某車從A到B用時3秒,該車是否超速?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(8,6),C(0,10),AC=CO,直線AC交x軸于點M,將△AOC沿直線AC翻折,使得點O落在點B處,連接AB交x軸于D,動點P從點O出發(fā),以2個單位長度/秒的速度沿射線OA運動;同時動點Q從A出發(fā)以每秒1個單位的速度沿射線AB運動。
(1)求B點的坐標;
(2)連接PB,設(shè)點P的運動時間為t秒,△PAB的面積為S,求S與t的關(guān)系式,并直接寫t的取值范圍;
(3)在點P、Q運動過程中,當(dāng)t為何值時,△APQ是以PQ為底邊的等腰三角形?并直接寫出Q點坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y= x2+bx+c與x軸、y軸分別相交于點A( 1,0)、B(0,3)兩點,其頂點為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個交點為E. 求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短。若存在請求出P點的坐標,若不存在說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為應(yīng)對越來越復(fù)雜的交通狀況,某城市對其道路進行拓寬改造,工程隊在工作了一段時間后,因雨被迫停工幾天,隨后工程隊加快了施工進度,按時完成了拓寬改造任務(wù).下面能反映該工程尚未改造的道路(米)與時間(天)的關(guān)系的大致圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點、、分別在、、上,且,,下面寫出了說明“”的過程,請?zhí)羁眨?/span>
∵,
∴_______,________.(________________________)
∵
∴___________,(________________________)
∵
∴___________,(________________________)
∴.(等量代換)
∵(平角定義)
∴(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,M、N分別是AD,BC的中點,∠AND=90°,連接CM交DN于點O.
(1)求證:△ABN≌△CDM;
(2)過點C作CE⊥MN于點E,交DN于點P,若PE=1,∠1=∠2,求AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A、B兩點,與y軸交于C點,對稱軸與拋物線相交于點M,與x軸相交于點N.點P是線段MN上的一動點,過點P作PE⊥CP交x軸于點E.
(1)直接寫出拋物線的頂點M的坐標是 .
(2)當(dāng)點E與點O(原點)重合時,求點P的坐標.
(3)點P從M運動到N的過程中,求動點E的運動的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com