【題目】在探究一次函數(shù)的圖像性質(zhì)時我們有如下發(fā)現(xiàn):
①系數(shù)決定了函數(shù)圖像的坡度,越大則圖像坡度越大(越靠近軸),越小則圖像坡度越小(越靠近軸);
②常數(shù)項決定了圖像與軸的交點,即函數(shù)圖像與軸交點坐標(biāo)始終為.
基于以上發(fā)現(xiàn),我們得出結(jié)論:如果兩個一次函數(shù)的值相同,那么兩個一次函數(shù)的圖像平行.反之,如果兩直線平行,則兩條直線所對應(yīng)的函數(shù)表達(dá)式的值一定相等:把函數(shù)圖像沿軸向上(或向下) 平移個單位, 系數(shù)保持不變, 常數(shù)變?yōu)?/span> (或).如:函數(shù)和的圖像互相平行:函數(shù)的圖像向上平移2個單位后所得函數(shù)表達(dá)式為.
據(jù)此回答下列問題:
(1) 把函數(shù)的圖像向上平移4個單位后所得函數(shù)的表達(dá)式為____;
(2)把函數(shù)的圖像向 (上或下)平移 個單位可得到函數(shù)的圖像;
(3)若直線經(jīng)過點且與直線平行,求出直線的表達(dá)式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足+=0,請回答問題:
(1)請直接寫出a、b、c的值;
(2)數(shù)軸上a、b、c所對應(yīng)的點分別為A、B、C,點M是A、B之間的一個動點,其對應(yīng)的數(shù)為m,請化簡(請寫出化簡過程);
(3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動.若點A以每秒1個單位長度的速度向左運動.同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動.假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)圖中信息解答下列問題:
(1)關(guān)于x的不等式ax+b>0的解集是 ;
(2)關(guān)于x的不等式mx+n<1的解集是 ;
(3)當(dāng)x滿足 的條件時,y1y2;
(4)當(dāng)x滿足 的條件時,0<y2<y1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負(fù),單位:km):
第1批 | 第2批 | 第3批 | 第4批 | 第5批 |
3 km | 10 km | -4 km | -3 km | -7 km |
(1)接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?
(2)該駕駛員離公司距離最遠(yuǎn)是多少千米?
(3)若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周日上午小明從家跑步去圖書館,在那里看了一會兒書后又走到文具店去買筆記本,然后散步回家.下圖反映的是小明離家的距離 與所用時間之間的函數(shù)關(guān)系,據(jù)此回答問題:
(1)圖書館離小明家 ,小明從家到圖書館用了 .
(2)圖書館離文具店____.
(3)小明在文具店停留了
(4)小明從文具店回到家的平均速度是多少千米/小時?(寫出簡要計算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線經(jīng)過點且與直線交于點.
(1)求點的坐標(biāo).
(2)求直線的表達(dá)式.
(3)若直線與軸、軸分別交于兩點,直線與軸交于點, 求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(點P不與點A、B重合),連AP、BP,過點C作CM∥BP交PA的延長線于點M.
(1)填空:∠APC=____ 度,∠BPC=____度;
(2)求證:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店今年1月份的銷售額是2萬元,3月份的銷售額是3.38萬元.
(1)求從1月份到3月份,該商店銷售額平均每月的增長率;
(2)如果該商店4月份銷售額增長率保持不變,銷售額能否達(dá)到4.5萬元,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點D是AB的中點,過點B作CD的垂線,垂足為點E.
(1)求線段CD的長;
(2)求cos∠ABE的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com