如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(﹣1,0),請(qǐng)解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點(diǎn)為點(diǎn)D,對(duì)稱軸與x軸交于點(diǎn)E,連接BD,求BD的長(zhǎng).
注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2011年10月20日起,杭州市調(diào)整出租車運(yùn)價(jià),設(shè)里程數(shù)為公里,當(dāng)時(shí),起步價(jià)從原來3公里以內(nèi)10元另加1元燃油附加費(fèi)合并調(diào)整后仍為11元;當(dāng)時(shí),從原每公里2元調(diào)整為2.5元;當(dāng)時(shí),從原來每公里3元調(diào)整為3.75元;等候費(fèi)從原每5分鐘2元調(diào)整為每4分鐘2.5元(不足1公里以1公里計(jì)).假設(shè)遇紅燈及堵車等候時(shí)間共計(jì)20分鐘,請(qǐng)問:一次乘車花60元錢,調(diào)價(jià)前、后最多分別可以坐多少公里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將邊長(zhǎng)為6的正方形ABCO放置在直角坐標(biāo)系中,使點(diǎn)A在x軸負(fù)半軸上,點(diǎn)C在y軸正半軸上。點(diǎn)M(t,0)在x軸上運(yùn)動(dòng),過A作直線MC的垂線交y軸于點(diǎn)N.
(1) 當(dāng)t = 2時(shí),tan∠NAO = ;
(2) 在直角坐標(biāo)系中,取定點(diǎn)P(3,8),則在點(diǎn)M運(yùn)動(dòng)過程中,當(dāng)以M、N、C、P為頂點(diǎn)的四邊形是梯形時(shí),點(diǎn)M的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2014年我國(guó)農(nóng)村義務(wù)教育保障資金約為87900000000元,請(qǐng)將數(shù)87900000000用科學(xué)記數(shù)法表示為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AC=BC=8,∠C=90°,點(diǎn)D為BC中點(diǎn),將△ABC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)45°,得到△A′B′C′,B′C′與AB交于點(diǎn)E,則S四邊形ACDE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某工廠有甲種原料69千克,乙種原料52千克,現(xiàn)計(jì)劃用這兩種原料生產(chǎn)A,B兩種型號(hào)的產(chǎn)品共80件,已知每件A型號(hào)產(chǎn)品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號(hào)產(chǎn)品需要甲種原料1.1千克,乙種原料0.4千克.請(qǐng)解答下列問題:
(1)該工廠有哪幾種生產(chǎn)方案?
(2)在這批產(chǎn)品全部售出的條件下,若1件A型號(hào)產(chǎn)品獲利35元,1件B型號(hào)產(chǎn)品獲利25元,(1)中哪種方案獲利最大?最大利潤(rùn)是多少?
(3)在(2)的條件下,工廠決定將所有利潤(rùn)的25%全部用于再次購(gòu)進(jìn)甲、乙兩種原料,要求每種原料至少購(gòu)進(jìn)4千克,且購(gòu)進(jìn)每種原料的數(shù)量均為整數(shù).若甲種原料每千克40元,乙種原料每千克60元,請(qǐng)直接寫出購(gòu)買甲、乙兩種原料之和最多的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一只不透明的袋子中裝有兩個(gè)完全相同的小球,上面分別標(biāo)有1,2兩個(gè)數(shù)字,若隨機(jī)地從中摸出一個(gè)小球,記下號(hào)碼后放回,再隨機(jī)摸出一個(gè)小球,則兩次摸出小球的號(hào)碼之積為偶數(shù)的概率是( 。
| A. |
| B. |
| C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是某通道的側(cè)面示意圖,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠BAM=30°,AB=6m.
(1)求FM的長(zhǎng);
(2)連接AF,若sin∠FAM=,求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線與雙曲線交于A,B兩點(diǎn),連接OA,OB,AM⊥y軸于M,AN⊥x軸于N,有以下結(jié)論: ①OA=OB; ②△AOM≌△BON;
③若∠AOB=45O,則S△AOB=k.其中正確的是
(填序號(hào)即可).【原創(chuàng)】
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com