【題目】我市從2018年1月1日開始,禁止燃油助力車上路,于是電動(dòng)自行車的市場需求量日漸增多.某商店計(jì)劃最多投入8萬元購進(jìn)A、B兩種型號(hào)的電動(dòng)自行車共30輛,其中每輛B型電動(dòng)自行車比每輛A型電動(dòng)自行車多500元.用5萬元購進(jìn)的A型電動(dòng)自行車與用6萬元購進(jìn)的B型電動(dòng)自行車數(shù)量一樣.
(1)求A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià);
(2)若A型電動(dòng)自行車每輛售價(jià)為2800元,B型電動(dòng)自行車每輛售價(jià)為3500元,設(shè)該商店計(jì)劃購進(jìn)A型電動(dòng)自行車m輛,兩種型號(hào)的電動(dòng)自行車全部銷售后可獲利潤y元.寫出y與m之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,該商店如何進(jìn)貨才能獲得最大利潤?此時(shí)最大利潤是多少元?
【答案】(1)A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為2500元、3000元;(2)y=﹣200m+15000;(3)m=20時(shí),y有最大值,最大值為11000元.
【解析】
(1)設(shè)A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為x元(x+500)元,構(gòu)建分式方程即可解決問題;
(2)根據(jù)總利潤=A型的利潤+B型的利潤,列出函數(shù)關(guān)系式即可;
(3)利用一次函數(shù)的性質(zhì)即可解決問題;
(1)設(shè)A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為x元(x+500)元.
由題意:,
解得x=2500,
經(jīng)檢驗(yàn):x=2500是分式方程的解.
答:A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為2500元3000元.
(2)依題意,得:
解得:
y=(2800-2500)m+(3500-3000)(30-m)
=15000-200m
答:y與x之間的函數(shù)關(guān)系式為: y=15000-200m()
(3)設(shè)購進(jìn)A型電動(dòng)自行車m輛,
∵最多投入8萬元購進(jìn)A、B兩種型號(hào)的電動(dòng)自行車共30輛,
A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為2500元、3000元,
∴2500m+3000(30﹣m)≤80000,
解得:m≥20,
∴m的取值范圍是:20≤m≤30,
∵y=300m+500(30﹣m)=﹣200m+15000,
∵﹣200<0,
∴m=20時(shí),y有最大值,最大值為11000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB∥CD,NE平分∠FND,MB平分∠FME,且2∠E+∠F=222°,則∠FME的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上有A、B、C三個(gè)點(diǎn),它們表示的數(shù)分別是-24,-10,10.A、B兩點(diǎn)間的距離記為“AB”.
(1)填空:AB= ,BC= ;
(2)若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒3個(gè)單位 長度和7個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,用含t的代數(shù)式表示BC和AB的長,試探索:BC - AB的值是否隨著時(shí)間t的變化而改變?請(qǐng)說明理由.
(3)現(xiàn)有動(dòng)點(diǎn)P、Q都從A點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長度的速度向終點(diǎn)C移動(dòng);當(dāng)點(diǎn)P 移動(dòng)到B點(diǎn)時(shí),點(diǎn)Q才從A點(diǎn)出發(fā),并以每秒3個(gè)單位長度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)C點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng).設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問:當(dāng)t為多少時(shí)P、Q兩點(diǎn)相距6個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=.
(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個(gè)公共點(diǎn),求k的值;
(2)如圖,反比例函數(shù)y= (1≤x≤4)的圖象記為曲線C1,將C1向左平移2個(gè)單位長度,得曲線C2,請(qǐng)?jiān)趫D中畫出C2,并直接寫出C1平移到C2處所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的垂直平分線上.
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從A,B,C三個(gè)廠家生產(chǎn)的同一種產(chǎn)品中各抽出8件產(chǎn)品,對(duì)其使用壽命進(jìn)行跟蹤調(diào)查,結(jié)果(單位:年)如下:
A.3,4,5,6,8,8,8,10;
B.5,6,6,6,8,8,12,13;
C.3,3,4,7,9,10,11,12.
三個(gè)廠家在廣告中都稱該種產(chǎn)品的使用壽命為8年,請(qǐng)根據(jù)調(diào)查結(jié)果判斷廠家在廣告中分別運(yùn)用了平均數(shù)、中位數(shù)、眾數(shù)中的哪一個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對(duì)航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請(qǐng)根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com