【題目】如圖,已知菱形ABCD的邊長為2cm,∠A=60°,點(diǎn)M從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)B運(yùn)動,點(diǎn)N從點(diǎn)A同時出發(fā),以2cm/s的速度經(jīng)過點(diǎn)D向點(diǎn)C運(yùn)動,當(dāng)其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.則△AMN的面積y(cm2)與點(diǎn)M運(yùn)動的時間t(s)的函數(shù)的圖象大致是( 。
A. B.
C. D.
【答案】A
【解析】
試題已知點(diǎn)M從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)B運(yùn)動,點(diǎn)N從點(diǎn)A同時出發(fā),以2cm/s的速度經(jīng)過點(diǎn)D向點(diǎn)C運(yùn)動,當(dāng)其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.因而點(diǎn)M,N應(yīng)同時到達(dá)端點(diǎn),當(dāng)點(diǎn)N到達(dá)點(diǎn)D時,點(diǎn)M正好到達(dá)AB的中點(diǎn),則當(dāng)t≤1秒時,△AMN的面積y(cm2)與點(diǎn)M運(yùn)動的時間t(s)的函數(shù)關(guān)系式是:y=;當(dāng)t>1時:函數(shù)關(guān)系式是:y=.故答案選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,,將△ABC繞點(diǎn)B逆時針旋轉(zhuǎn),得到,當(dāng)點(diǎn)在線段CA延長線上時的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(教材呈現(xiàn))下圖是華師版九年級上冊數(shù)學(xué)教材第103—104頁的部分內(nèi)容.
定理證明:請根據(jù)教材圖24.2.2的提示,結(jié)合圖①完成直角三角形的性質(zhì):“直角三角形斜邊上的中線等于斜邊的一半”的證明.
定理應(yīng)用:如圖②,在中,,垂足為點(diǎn)(點(diǎn)在上),是邊上的中線,垂直平分.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長春市對全市各類(A型、B型、C型.其它型)校車共848輛進(jìn)行環(huán)保達(dá)標(biāo)普查,普查結(jié)果繪制成如下條形統(tǒng)計(jì)圖:
(1)求全市各類環(huán)保不達(dá)標(biāo)校車的總數(shù);
(2)求全市848輛校車中環(huán)保不達(dá)標(biāo)校車的百分比;
(3)規(guī)定環(huán)保不達(dá)標(biāo)校車必須進(jìn)行維修,費(fèi)用為:A型500元/輛,B型1000元/輛,C型600元/輛,其它型300元/輛,求全市需要進(jìn)行維修的環(huán)保不達(dá)標(biāo)校車維修費(fèi)的總和;
(4)若每輛校車乘坐40名學(xué)生,那么一次性維修全部不達(dá)標(biāo)校車將會影響全市80000名學(xué)生乘校車上學(xué)的百分比是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)化肥的總?cè)蝿?wù)一定,平均每天化肥產(chǎn)量y(噸)與完成生產(chǎn)任務(wù)所需要的時間x(天)之間成反比例關(guān)系,如果每天生產(chǎn)化肥125噸,那么完成總?cè)蝿?wù)需要7天.
(1)求y關(guān)于x的函數(shù)表達(dá)式,并指出比例系數(shù);
(2)若要5天完成總?cè)蝿?wù),則每天產(chǎn)量應(yīng)達(dá)到多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)y= 的圖象上有一動點(diǎn)A,連接AO并延長交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動時,點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動,若tan∠CAB=2,則k的值為( )
A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)A(2,0),交軸于點(diǎn)B(0,),直線過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個交點(diǎn)為D,作DE⊥y軸于點(diǎn)E.設(shè)點(diǎn)P是直線AD上方的拋物線上一動點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作y軸的平行線,交直線AD于點(diǎn)M,作PN⊥AD于點(diǎn)N.
⑴填空:= ,= ,= ;
⑵探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
⑶設(shè)△PMN的周長為,點(diǎn)P的橫坐標(biāo)為x,求與x的函數(shù)關(guān)系式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)B在x軸的正半軸上,OA邊在直線y=x上,AB邊在直線y=-x+2上.
(1)直接寫出:線段OA等于多少,∠AOC等于多少度;
(2)在對角線OB上有一動點(diǎn)P,以O為圓心,OP為半徑畫弧MN,分別交菱形的邊OA、OC于點(diǎn)M、N,作⊙Q與邊AB、BC、弧MN都相切,⊙Q分別與邊AB、BC相切于點(diǎn)D、E,設(shè)⊙Q的半徑為r,OP的長為y,求y與r之間的函數(shù)關(guān)系式,并寫出自變量r的取值范圍;
(3)若以O為圓心、OA長為半徑作扇形OAC,請問在菱形OABC中,在除去扇形OAC后的剩余部分內(nèi),是否可以截下一個圓,使得它與扇形OAC剛好圍成一個圓錐,若可以,求出這個圓的半徑,若不可以,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com